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ABSTRACT 

Self-Stabilizing Group Membership Protocol 
 

 
by 
 

Mahesh Subedi 

Dr. Ajoy K. Datta, Examination Committee Chair 

Professor of Computer Science  
University of Nevada, Las Vegas 

 
 In this thesis, we consider the problem of partitioning a network into 

groups of bounded diameter. 

 Given a network of processes   and a constant  , the group partition 

problem is the problem of finding a  -partition of  , that is, a partition of 

  into disjoint connected subgraphs, which we call groups, each of 

diameter no greater than  . The minimal group partition problem is to find 

a  -partition          of   such that no two groups can be combined; 

that is, for any    and   , where    , either       is disconnected or 

      has diameter greater than  . 

 In this thesis, a silent self-stabilizing asynchronous distributed 

algorithm is given for the minimal group partition problem in a network 

with unique IDs, using the composite model of computation. The 

algorithm is correct under the  unfair daemon. 

 It is known that finding a  -partition of minimum cardinality of a 

network is NP-complete. In the special case that   is the unit disk graph 

in the plane, the algorithm presented in this thesis is     -competitive, 
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that is, the number of groups in the partition constructed by the 

algorithm is      times the number of groups in the minimum  -

partition. 

 Our method is to first construct a breadth-first search (BFS) tree for 

 , then find a maximal independent set (MIS) of  . Using the MIS and the 

BFS tree, an initial  -partition is constructed, after which groups are 

merged with adjacent groups until no more mergers are possible. The 

resulting  -partition is minimal. 
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CHAPTER 1  

INTRODUCTION 

 The network topology of wireless ad hoc networks is  highly dynamic 

and random. Nodes within such networks should be able to self-organize 

and maintain any logical communication infrastructure. Also, frequent 

changes in topology are hard to predict. Since mobile ad hoc networks 

are based on wireless links, they are more prone to message loss, and 

can experience higher delays and jitter, than fixed networks. 

In addition to this, because of the highly dynamic nature of mobile ad 

hoc networks, any service running on top of these networks must be 

reliable. A group membership approach can help maintain reliability by 

providing a cluster of nodes over the network that complies with the 

properties required by the service using this network. Clusters of nodes 

within the network partition this network while adhering to the given 

problem constraints. Computing the maximum diameter of the network 

is one of the most important requirements of applications running on top 

of group membership protocols. Applications running on top of a group 

membership protocol leverage the management of execution context 

dynamics and node mobility by using this membership protocol. Group 

membership provides various functionalities like collaborative editing, 

providing fault tolerance, sharing computational load, etc.  

 A group management protocol in mobile ad hoc networks requires a 

number of design constraints and choices. Group constraints can be set 
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according to the application that uses the underlying group membership 

service. These group constraints can be view size, diameter of the view, 

geographical positions of the view members, or some integrity and/or 

security constraints.  

 Beside the constraints required by the application running above the 

group management service, the protocol itself must be distributed and 

self-stabilizing to achieve fault tolerance. The group management 

protocol must be the same for each node running the protocol, 

independent of the underlying network or configurations. There should 

not be any centralized node to manage group membership. This helps 

achieve fault tolerance and load balancing in the network. Every 

distributed system is prone to various failures including node failures, 

memory corruption etc. The failure can be permanent, e.g. node failure, 

or temporary, e.g. memory corruption. The distributed system, regardless 

of the current state, should be guaranteed to recover to a legal 

configuration in a finite number of steps, and remain in the legal state 

until another fault occurs. Also, aside from overcoming faults, the 

protocol must overcome any churn, i.e. change in topology or any new 

appearance or disappearance of a node, in the network. Another 

important property of wireless ad hoc networks is the efficiency of the 

protocol. The overhead of group membership management must be low. 

The amount of message sending and receiving required, and the time 

required to achieve self-stabilization, must be minimum. This is critical 
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in mobile wireless networks due to limited resources, specifically power 

constraints.   

1.1 Contributions 

 We present a silent self-stabilizing distributed algorithm, in the 

composite model of computation, for the group membership or partition 

problem. Our algorithm works under the unfair daemon, and has a 

competitiveness of O(d_max) in the planar disk graph case. The time 

complexity of our algorithm is O  
      

       , where n is the number of 

processes in the network and diam is the diameter of the network. The 

space complexity of our algorithm is O(H) for each process, where H is 

the maximum cardinality of (d_max+1)-neighborhood of any process. Our 

algorithm is constructed using a new technique for combining 

distributed self-stabilizing algorithms. 

1.2 Outline 

 In Chapter 2, we give an overview of the distributed systems, mobile 

ad hoc networks and group membership problem in general. We discuss 

the related background work on membership management protocols. In 

Chapter 3, we describe the model of computation used in the thesis and 

discuss distributed networks and dynamic arrays. Then we formally 

define the problem specification of the thesis.  

 Combining two different distributed self-stabilizing algorithms is given 

in Chapter 4. Chapter 5 provides the overview of the algorithm followed 
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by more detailed description of the algorithm. We then present different 

mode of incompatibility. The preprocessing module is described in 

Chapter 6. Computation of dist, BFS and MIS trees, beta and the 

computation of initial partition is covered in the subsequent sections of 

chapter 6.  

 Chapter 7 and 8 describe the main modules of the algorithm Front 

and Back respectively. In Section 7.1 we describe the computation of a 

dynamic array for each process. Section 7.2 describes the computation of 

dynamic array grp_dist[ ] for error-checking purpose. The neighbor 

groups of current process dynamic array border_dist[ ] is computed in 

section 7.3. Dynamic array strong_cert[ ] is computed to decide whether 

to merge or not to merge two groups, we describe in section 7.4. 

Computation of bid, agree and merge_dist followed by computation of 

near and far are described in subsequent sections. 

 Two modules of back, weak_cert and merge, are described in sections 

8.1 and 8.2 respectively.  

 In Chapter 9, we discuss the error detection of the algorithm followed 

by complexities and competitiveness in Chapter 10 and 11 respectively. 

 Chapter 12 concludes the thesis.  
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CHAPTER 2  

BACKGROUND 

2.1 Distributed Systems 

 A distributed system is a communication network, or a collection of 

independent computers that appears to its users as a single coherent 

system.  It can even be a single multitasking computer [14]. Although the 

processors in distributed systems are autonomous in nature, they may 

need to communicate with each other to coordinate their actions and 

achieve a reasonable level of cooperation [24]. In a distributed system, a 

program composed of executable statements is run by each computer. 

Each execution of a statement changes the computer’s local memory 

content, and hence the state of the computer. Consequently, a 

distributed system is modeled as a set of n state machines that 

communicate with each other.  

In a distributed system, there are mainly two models of 

communication between machines: message passing and shared 

memory. In the message passing model, machines communicate with 

each other by sending and receiving messages, whereas in the shared 

memory model, communication is carried out by writing to and reading 

from the shared memory. 

2.3 Self-stabilizing Systems 

 Self-Stabilization is related to autonomic computing, which entails 

several “self-*” attributes like: self-organized [3], self-configuration, self-
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healing, and self-maintaining [25]. According to [25], research in a self-* 

system is “a direct response to the shift from needing bigger, faster, 

stronger computer systems to the need for less human-intensive 

management of the systems currently available. System complexity has 

reached the point where administration generally costs more than 

hardware and software infrastructure.” The goals of the self-* systems 

are reduction of human administration and maintenance, and an 

increase of reliability, availability and performance. 

 In 1973, Dijkstra introduced the term self-stabilization into the world 

of computer science [13].  The concept of self-stabilization is one of fault-

tolerance. Unfortunately, only a few people had become aware of its 

importance until Lamport endorsed this as “Dijkstra’s most brilliant 

work” and a “milestone in work on fault-tolerance” in his invited talk at 

the ACM Symposium on Principles of Distributed Computing in 1983. 

Today it is one of the most active areas of research in the field of 

computer science. 

 A system is considered self-stabilizing if, starting from any arbitrary 

state (possibly a fault state), it is guaranteed to converge to a legitimate 

state which satisfies its problem specification in a finite number of steps. 

Once it converges to a legitimate state, it must stay in that legitimate 

state thereafter unless a fault occurs. With respect to behavior, it can 

also be defined as a system starting from an arbitrary state, reaching a 

state in finite time from which it starts behaving correctly according to its 
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specification. Thus self-stabilization enables systems to recover from a 

transient fault automatically. 

 According to [6,5], self-stabilization can be defined in terms of two 

properties; closure and convergence. Closure means that if a system is in 

a correct (or legitimate) state, it is guaranteed to stay in a correct state, if 

no fault occurs. On the other hand, convergence means that starting 

from any arbitrary state, it is guaranteed that the system will eventually 

reach a correct state in finite steps. In order for a system to be self 

stabilizing, it must satisfy both of these properties. 

 Self –stabilization has been extensively studied in the area of network 

protocols. Protocols like routing, sensor networks, high-speed networks, 

and connection management are just a part of many applications of self-

stabilization. Also, there exist many self-stabilizing distributed solutions 

for graph theory problems.  Examples include spanning tree 

constructions, maximal matching, search structures, and graph coloring. 

Many self-stabilizing solutions for numerous classical distributed 

algorithms were also proposed. These include mutual exclusion, token 

circulation, leader election, distributed reset, termination detection, and 

propagation of information with feedback [14]. 

 In the study of self-stabilization, several aspects of models have been 

considered, such as the following: 

Inter process Communication: shared registers or message passing. 

Fairness: weakly fair, strongly fair, or unfair. 
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Atomicity: composite or read/write atomicity. 

Types of Daemon: central or distributed. 

 All in all, proving stabilization programs is quite challenging. Two 

techniques have been commonly used in research literature, convergence 

stair [19] and variant function [20] methods. Furthermore, many general 

methods of designing self-stabilizing programs have been proposed which 

include diffusing computation [4], silent stabilization [15], local stabilizer 

[1], local checking and local correction [8, 7], counter flushing [27], self-

containment [18], snap-stabilization [11], super-stabilization [16], and 

transient fault detector [9]. 

 Self-stabilization is a significant concept in the study of MANETs. Due 

to the dynamic nature of MANET topology, the protocols for setting up 

and organizing MANETs are desirable to be self-stabilizing. 

2.3 Mobile Ad Hoc Networks  

 Mobile ad hoc networks are key to the evolution of wireless networks. 

Ad hoc networks are typically composed of equal nodes that 

communicate over wireless links without any central control. In this type 

of network, communication between two hosts is peer-to-peer, i.e., each 

host directly communicating with another connected host. Ad hoc 

networks have the same problems carried by wireless and mobile 

communications such as bandwidth optimization, power control, and 

transmission quality enhancements. Moreover, the multi-hop nature of 
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ad hoc networks and lack of fixed infrastructures generates new research 

problems. 

 Mobile ad hoc networks in general are formed dynamically by an 

autonomous system of mobile nodes that are connected via wireless links 

without using the existing network infrastructure or centralized 

administration.  

2.4 Related Work 

 Best effort group service[17] is a self-stabilizing dynamic distributed 

protocol which ensures that the diameter of each group is limited by an 

application specific maximum value (D-max).  It tries to maintain existing 

groups unless strong topology changes occur.  The continuity property 

allows an application running on top of best-effort group service to have 

a more consistent view while executing. To maintain continuity, the 

groups do not split unless required by diameter constraints.  

In this protocol, any node whose neighbors within D-max hop distance 

are potential group members. By flooding messages in a neighborhood,   

a list of candidates can be discovered in D-max time. A current view 

members maintained by a node are then sent in the neighborhood. If the 

merging of the received list violates the diameter property, the list is 

ignored and the sender is marked as incompatible. Any addition of a new 

node in the group will be propagated to all the view members within D-

max time. The arrival of this node is accepted only when this does not 

violate the diameter property. In the case of two members accepted by 
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the two distant members of the view, one new member must leave the 

group to ensure that the existing group does not split. New members are 

added in view only after a D-max quarantine period to ensure they are 

not rejected by other members of the current view. When a node needs to 

leave the group to ensure the diameter constraint, the node with lowest 

priority is removed. If priority is not defined by the application using the 

membership service, is determined by node identity.  Node identity is 

used to decide which node to remove. 
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CHAPTER 3  

PRELIMINARIES 

3.1 Model 

 We are given a connected undirected network,         of      , 

where    , and a distributed algorithm A on that network. Each 

process   has a unique ID,     . By an abuse of notation, we will identify 

each process with its ID. 

 A self-stabilizing [13, 14] system is guaranteed to converge to the 

intended behavior in finite time, regardless of the initial state of the 

system. In particular, a self-stabilizing distributed algorithm will 

eventually reach a legitimate state within finite time, regardless of its 

initial configuration, and will remain in a legitimate state forever. An 

algorithm is called silent if eventually all execution halts. 

 We use the composite atomicity model of computation, where each 

process has variables. Each process can read the values of its own and 

its neighbors', but can only write to its own variables. Each transition 

from a configuration to another, called a step of the algorithm, is driven 

by a scheduler, also called a daemon. 

 The program of each process consists of a finite set of actions of the 

following form:                                                . 

For each action, the label is listed in the first column, and an informal 

name is listed in the second column. The third column (guard) contains a 

list of clauses, all of which must hold for the action to execute, and the 
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fourth column contains the statement of the action. The guard of an 

action in the program of a process   is a Boolean expression involving the 

variables of   and its neighbors. The statement of an action of   updates 

one or more variables of process  . An action can be executed only if it is 

enabled, i.e., its guard evaluates to true. 

 In the tables of programs, we assign a priority, a positive integer, to 

each action. The guard of each action is the conjunction of the clauses in 

the third column, together with the condition that no earlier (in terms of 

priority) action is enabled. 

 A process is said to be enabled if at least one of its actions is enabled. 

A step         consists of one or more enabled process executing an 

action. The evaluations of all guards and executions of all statements of 

those actions are presumed to take place in one atomic step called 

composite atomicity [14]. All three of our algorithms are uniform, i.e., 

every process has the same program. 

 When a process   executes the statement of an action, there could be 

neighbors of   that are executing statements during the same step. We 

specify that   uses the current values of its own variables (which could 

have just been changed during the current step), but old values of its 

neighbors' variables, i.e., values before the current step. 

 We use the distributed daemon. If one or more processes are enabled, 

the daemon selects at least one of these enabled processes to execute an 

action. We also assume that the daemon is unfair, i.e., that it need never 
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select a given enabled process unless it becomes the only enabled 

process. 

 We define a computation to be a sequence of configurations    

         such that each         is a step. 

 We measure the time complexity in rounds [14]. The notion of round 

[14], captures the speed of the slowest process in an execution. We say 

that a finite computation                is a round if the 

following two conditions hold:   

1. Every process   that is enabled at    either executes or becomes 

neutralized during some step of  . We say that a    is neutralized at 

a step      if   is enabled at   and not enabled at   , but   does 

not execute during that step.  

2. The computation           does not satisfy condition 1.  

 We call a computation of positive length which fails to satisfy 

condition 1 an incomplete round. 

 We define the round complexity of a computation to be the number of 

disjoint rounds in the computation. More formally, we say that a 

computation          has round complexity   if there exist indices 

                 such that, 

1.      
      

 is a round for all      ,  

2.      
      is either a round or an incomplete round. 
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 We remark that an incomplete round could have infinite length, since 

the unfair daemon might never select an enabled process. But this 

cannot happen for the algorithms given in this paper. We will show that 

every computation of each of our algorithms is finite, i.e., all the 

proposed algorithms in this thesis "work" under the unfair daemon.  

3.2 Network 

 We are given a network of   processes with unique IDs. 𝑁    is the set 

of neighbors of a process  .         𝑁           . 

 The length of a path is defined to be the number of edges in the path. 

The distance     𝑦  between processes   and 𝑦 is defined to be the 

smallest length of any path between   and 𝑦. 

 Define       = {y: d(x, y)   k }, to be the k-neighborhood of x. Thus, 

U(x) =      .  

 A subgraph of X = (V, E) is a set of processes V together with a set E of 

links between those processes. We say that a subgraph G = (       is full 

if every link of X both of whose ends are processes of G is a link of G. By 

abuse of notation, we will write x   G to mean x     if x is a process, or e 

   G  to mean that e     if e is a link. 

 If x, y   G are processes, define      𝑦  to be the length of the shortest 

path which lies entirely in G between x and y. If there is no such path we 

define      𝑦  =  . We say that G is disconnected if there exist processes 

x, y   G such that      𝑦  =  ; otherwise, we say G is connected. Note 

that  (x, y)       𝑦 . 
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 The size of a subgraph G, written size(G), is the cardinality (number of 

processes) of G. A component of a subgraph G is the maximal non-empty 

connected subgraph of G. A non-empty connected subgraph has exactly 

one component.  

 The diameter of a non-empty connected subgraph G, written diam(G), 

is defined to be the maximum length of the minimum length path 

through G, between any two processes of G, i.e., diam(G) = max          

  𝑦  :  , 𝑦   }. 

3.3 Dynamic Arrays 

 In our algorithm, each process will have both simple and array 

variables. In each case, the range of an array variable is a set of process 

IDs. The values and ranges of the arrays can change, and the range is 

normally smaller than the set of all process IDs. Thus, array variables 

are sparse dynamic arrays. 

 We illustrate this with an example. Each process   will have an array 

variable           , in which it will store the distances to all processes 

within         of  . Thus, eventually, Range                        . 

Initially,   does not know the IDs of those processes. If we write        𝑦 , 

we mean the value of     𝑦  that   has in its memory, which may not be 

the correct value. If   does not have a value for     𝑦 , i.e..,   

                 , we write            , where " " is the symbol for "null," 

or "undefined." 
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 If we need to set        𝑦  to a value  , we write        𝑦   . If 

          was previously defined, the old value is simply overwritten, but 

if, previously,        𝑦   , then   is added to                   and then 

the value   is assigned. Similarly, if we write        𝑦   , and previously 

       𝑦  was defined, then 𝑦 is deleted from the                  . Because 

of arbitrary initialization, the initial range of            could contain IDs of 

processes that are not within the allowed distance, or even fictitious IDs. 

Techniques for implementation of sparse dynamic arrays are well-known, 

and we do not concern ourselves with the details of that implementation. 

 We allow a process to reassign all values of a dynamic array in a 

single step. For example, in Action A1 in Table 6.1, we allow   to update 

the values of           for any number of   in a single step. 

3.4 Problem Specification  

 We are given a positive integer d_max. We define partition of X to be a 

set of disjoint subgraphs, {              , called groups, whose union 

contains all process of X, such that diam(           for all i. We say 

that a partition is minimal if no two adjacent groups can be combined 

into a set whose diameter is at most d_max. A minimal partition may not 

be minimum, and it is known that finding a minimum partition, one 

which has the smallest possible number of groups, is NP-hard. 

 Our problem is to find a minimal partition of the network, such that 

each process knows the ID and the distance, in its group, of every 
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process in its group. In this thesis, we give a silent self-stabilizing 

algorithm which solves the problem.  
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CHAPTER 4  

COMBINING SELF-STABILIZING ALGORITHMS 

 We now consider the problem of combining distributed algorithms. 

The problem of constructing such a combination, which is trivial for 

sequential algorithms, is somewhat harder for distributed algorithms. 

 For example, suppose A and B are algorithms, which are 

concatenated, i.e., combined sequentially, to form an algorithm which we 

call A + B. We will call A and B modules of the combined algorithm. A + 

B consists of first executing A, then executing B, which uses the output 

of A as its input. 

 This construction is trivial in the sequential model, but not at all easy 

in the distributed model. For example, suppose that A and B are both 

self-stabilizing and silent. That is, from an arbitrary configuration, A 

always converges to a configuration that satisfies some intermediate 

predicate, and then halts; while from a configuration which satisfies that 

intermediate predicate, B always converges to a configuration that 

satisfies some final predicate, and then halts. 

 More formally, we define an instance of the SSS-concatenation, i.e., 

self stabilizing and silent distributed algorithm concatenation, problem to 

consist of the following. 

1. A network   of processes, where each process   has a set of 

variables. Let               be the set of states of  , as normally 
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defined in the composite atomicity model, i.e., each state of   is a 

vector consisting of a value for each variable of  . 

Let C                , the set of configurations of the network. For 

any     , let C                        , the local configuration of  .  

2. Two sets of actions, which we call the set of A-actions and the set 

of B -actions. If            C, we write  
 
   ,  

 
    , if there is an A-

action, respectively B-action, which changes   to   , respectively    . 

Similarly, we write   
*

A


 

     if there is an A-computation, i.e., a 

sequence of A-actions, which changes   to     , and we define 

 
*

B
       similarly.  

3. A set of configurations A   C, the set of intermediate legitimate 

states, such that every maximal A-computation ends at a 

configuration in A. At a configuration in A, no process is enabled 

to execute an A-action.  

4. A set of configurations B   C, the set of final legitimate states, such 

that every maximal B-computation which starts in A ends at a 

configuration in B. At a configuration in B, no process is enabled to 

execute a B-action.  



www.manaraa.com

 

20 
 

 A solution to the above instance is an SSS distributed algorithm which 

converges to B. We will only consider solutions which are obtained by 

adding additional variables. More formally, all our solutions will have the 

following properties.  

1. Each process has all the same original variables, in addition to 

some other variables, which we call augmentation variables, or  -

variables. 

Let                be the set of states of the augmentation variables of 

a process  , and let S                  , the set of augmentation 

configurations of  . In the combined algorithm, the set of 

configurations is C   S. Each configuration of   is thus an ordered 

pair      , where    C is what we call the base configuration, and 

   S is the augmentation configuration.  

2. A set of actions for the combined algorithm, such that every 

maximal computation of the combined algorithm is finite and ends 

at a configuration in B   S.  

 Unfortunately, we have no solution for the SSS-concatenation 

problem in general. We do, however, have solutions in some simple cases 

which occur in practice. 
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4.1 The Nested SSS-Concatenation Problem 

 We need some additional notation. We write A-            respectively 

B-E         , if a process   is enabled to execute an A-action, 

respectively B-action. 

We define an instance of the nested SSS-concatenation problem to be 

an instance of the SSS-concatenation problem which satisfies the 

following additional conditions. 

1. B   A 

2. There is a subset of variables of each process, which we call A-

variables, such that   

(a) the predicate A-           depends only on the values of the 

A-variables of   and its neighbors, 

(b)  no B-action changes an A-variable,  

(c)   if    
 
       

 
    is a B-computation, and if no process  

which executes during that computation is A-enabled at the 

time it executes, then the computation is finite. 

Note: there is no guarantee that a maximal B-computation 

that satisfies the above restriction terminates in B, unless it 

begins in A.  
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  We can now implement A + B by using priorities; a process    cannot 

execute a B-action if it is enabled to execute an A-action. We call this 

combination of algorithms nested concatenation. 

 

Table 4.1:  Actions of A + B for  Process   : Nested Legitimacy Sets 

 

A1 

Priority 1 

 

A 

 

A-           

 

                
       

 

  executes an  

A-action 

A1 

Priority 2 

B B-           
                
         executes a  

B-action 

 
  

We illustrate the relation between the sets of configurations A, B, and 

C, in Figure 4.1. 

 

 

Figure 4.1 Relation between set of configurations 

In concatenation, where legitimacy sets are nested, A-        is defined only in 

terms of A-variables. A-actions are shown as solid-headed arrows, while B-

actions are indicated with open heads. Any execution outside A consisting of 

only B-actions is finite, provided A-actions have priority over B-actions.  

C 

A 

B 
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 Nested concatenation is used in the literature. For example, in [28], 

nested concatenation is used to construct the algorithm BFS-MIS which 

is used in this paper as a module for our algorithm. Also, in this thesis, 

we use nested concatenation to build the three main modules of our 

algorithm from submodules. 

4.2 The Non-Nested Restricted SSS-Concatenation Problem 

 We now consider a somewhat less restricted special case of the SSS-

concatenation problem. 

We define an instance of the non-nested restricted SSS-concatenation 

problem to be an instance of the SSS-concatenation problem which 

satisfies the following additional conditions. 

     1.  There is a set of configurations D   C such that   

        (a) A   D 

        (b) B   D 

        (c) Any B-computation starting from any configuration in D is 

finite, and ends in B.  

     2.  There is a predicate B            defined for each process   such 

that any maximal B computation either ends in B or contains a 

configuration where B            holds for some process  .  
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Figure 4.2 Non-Nested Restricted Concatenation Problem. 

Actions of A are shown as solid-headed arrows, while actions of B are 

indicated with open heads. From anywhere, a computation of A leads to 

A   D. From anywhere inside D, a computation of B leads to B. 

Executions of actions of B outside of D are undesirable, and could slow 

down convergence of A. Any computation of B eventually enters D, or is 

detected as erroneous by some process, but a computation mixing 

actions of A and B could continue forever without entering  or being 

detected as erroneous. (Although shown as disjoint in the figure, A and 

B could intersect.)   

  

 In order to construct the general concatenation A + B, we need to 

introduce additional variables and actions, and thus to expand the 

definition of a configuration.  

1. We assume the existence of a self-stabilizing silent leader election 

algorithm(module) LE. We do not concern ourselves with the 

actions and variables of LE, other than the following requirements 

that must be met when LE is silent:   

A 
B 

D 

C 
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(a) There is a leader process.  

(b) Each process   has a non-negative integer variable        , 

which is equal to the distance (i.e., length of the shortest 

path) between   and the leader of its component.  

 For example, the algorithm given in [28] could be used for LE.  

2. For any  process   , define  

           𝑦  𝑁     𝑦                                         

           𝑦  𝑁     𝑦                                        

3. The LE-configuration is defined to be the configuration of the 

network defined by considering only variables of LE. Let LE be the 

set of all LE-configurations, and let L be the set of all legitimate, 

i.e., silent, configurations of LE.  

4. Each process   has variables                      and           

     , called the color and the mode of  . 

We define the color-mode configuration to be the configuration of   

defined by considering only color and mode variables. Let M be the 

set of all color-mode configurations. 

Thus, S   LE   M, the set of augmentation configurations.  

5. We define the complete configuration to be the ordered triple        , 

where   is the base configuration,   is the LE-configuration, and   

is the color-mode configuration of the network. Thus, the set of 

complete configurations of the network is C   S   C   LE   M. 
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6. We let LE-           be the predicate defined using only the local 

LE-configuration of a process, which indicates that   is enabled to 

execute an action of LE.  

 We now give an overview of A + B in the non-nested restricted case. 

LE-actions execute with highest priority, ignoring the local base and 

color-mode configurations. After LE is silent, the configuration lies in 

C   L   M. The level values essentially define a BFS tree rooted at the 

leader. We will use that tree as a communication backbone to enforce the 

correct order of computations of A-actions and B-actions. 

 The problem we face in concatenating A and B is that, once A has 

become silent, the B-actions could cause processes to once again become 

A-enabled. This could result in an error, since the output variables of A 

could be merely temporary, intended to be altered when B executes. Our 

solution is to use         to indicate which of the two modules   is 

permitted to execute, and to use color waves to signal to processes that 

the execution of A is finished and they can change their mode from A to 

B. 

 We now explain in detail how the order of computation is enforced. If 

a process    detects any error (such as could be caused by the fact that 

an arbitrary initial configuration is permitted)         A and          

 . Each process remains in the color-mode state       as long as it has 
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not finished executing both LE and A. When the root, i.e., the leader 

elected by LE, detects that it is finished with both, it initiates a top-down 

color wave, changing all colors to 1, unless that wave is interrupted by 

the fact that not all calculations of LE and A are finished. This 

interruption can occur any number of times, but eventually, the color 1 

wave will reach the leaves, and a convergecast wave begins changing the 

colors of all processes to 2. 

 It is possible that the color 2 wave will also be interrupted, since that 

wave could start at some leaves while calculations of A are continuing in 

other portions of the network. But, eventually, the leader will have color 

2, and unless there is an error caused by the arbitrary initialization, all 

processes will have color 2 when the leader has color 2. 

 Finally, a top-down color 3 wave will start from the leader. Each 

process, while changing its color to 3, knows that (unless the 

configuration is in error) all calculations of A are finished throughout the 

network. When process and all its neighbors have color 3, it changes its 

mode to B, and is then is ready to execute actions of B. These actions 

could cause a process to once again become A-enabled, but that 

enablement will be ignored. Eventually, B will be silent, and thus A + B 

will be silent. 

 We now list additional functions we need to implement A + B.  
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1.                      , a Boolean which means that one of the 

following holds:   

(a)          B and 𝑦       for some 𝑦      .  

(b)            and 𝑦           for some 𝑦      .  

(c)            and 𝑦          for some 𝑦           .  

 Color-Mode error can only occur because of erroneous arbitrary 

initialization.  

2.                   , a Boolean which holds if one of the following 

holds:   

(a)            and 𝑦          for some 𝑦  𝑁   .  

(b)            and 𝑦          for some 𝑦           .  

Color inversion is not an error; it merely indicates that some 

processes achieved local silence of A and LE while  processes  

elsewhere were still executing A-actions or LE-actions.  
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Table 4.2:  Actions of A + B  in the Restricted Non-Nested Case for 

Process x 
A1 

Priority 1 

LE 

 

LE-Enabled(x) 
                
        executes an 

LE-action 

        A 

           

A2 

Priority 2 

B-Error          B 

B-          

                
               A 

           

A3 

Priority 2 

Color-Mode 

Error 

         B 

                      

                
               A 

           

A4 

Priority 3 

A Action  𝑦        𝑦        A 

A-           

                
        executes an  

A-action 

           

A5 

Priority 3 

B Action  𝑦        𝑦       B  

B-              

                
        executes a  

B-action 

A6 

Priority 4 

Color 

Inversion 
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A7 

Priority 4 

Broadcast 

Color Wave 

                 

          

 𝑦             𝑦      

      

 𝑦            𝑦          

 𝑦  𝑁     𝑦       

         

 

                
                   

A8 

Priority 4 

Convergeca

st Color 

Wave 

           

          

 𝑦            𝑦         

 𝑦            𝑦          

 𝑦  𝑁     𝑦              

                
                 

A9 

Priority 4 

End A 

Start B 

         A 

           

 𝑦  𝑁    𝑦             

                
               B 

 

 

4.3 Combining Distributed Algorithms in a Loop 

 We now consider a much harder combination construction, which we 

need for our algorithm in this paper. We call this the SSS-loop 

combination problem. Once again, the sequential version of the problem is 

trivial. Suppose we are given modules P, A, and B, and we wish to 

execute P first, followed by a loop which alternates execution of A and B 
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until neither module is capable of further execution. We could encode 

this algorithm as follows: 

 

Table 4.3: Sequential version of P + Loop(A, B) 
1: Execute P until it is finished 

2: repeat  

3:    Execute A until it is finished 

4:    Execute B until it is finished 

5: until neither A nor B can execute any more. 

 
  

The SSS-loop combination problem is to design a self-stabilizing silent 

distributed algorithm which accomplishes the same task as the 

sequential algorithm given above. We define an instance of the problem 

to consist of the following. 

1. Just as for the SSS-concatenation problem, we have a network  , 

where each  process  has variables, and C is set of configurations 

of the network.  

2. Three sets of actions, which we call the set of P-actions, the set of 

A-actions, and the set of B-actions.  

3. Sets of configurations P, D, E, A, B   C, such that   

(a) P   D.  
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(b) A, B   D   E. 

(c) A   B   . 

   as illustrated in Figure 4.3, and such that   

(a) No process is P-enabled in P.  

(b) No process is A-enabled in A. 

(c) No process is B-enabled in B. 

(d) Every maximal P-computation is finite and ends in P.  

(e) Every maximal A-computation that begins in D stays in D 

and ends in A.  

(f) Every maximal B-computation that begins in E stays in E 

and ends in B.   

4. Predicates A        B       , computable by  , such that   

(a) Every maximal A-computation either ends in A or contains 

a configuration in which  A        for at least one process  .  

(b) Every maximal B-computation either ends in B or contains a 

configuration in which  B          for at least one process  .   

5. Any alternating sequence of configurations of the form  

   

*

A
   

*

B
   

*

A
   

*

B
     

such that     A if   is odd and     B if   is even, is finite. 
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The purpose of this condition is to ensure that the combined 

algorithm eventually terminates.  

 Our task is to design a self-stabilizing silent distributed algorithm, 

P   LOOP(A,B), which works under the unfair daemon, and which 

emulates the following computation:  

1. Starting from any configuration in C, execute P-actions until the 

configuration reaches P.  

2. Execute the following loop until the configuration reaches A   B.   

(a) Execute A actions until the configuration reaches A.  

(b) Execute B actions until the configuration reaches B.  

Figure 4.3 illustrates the desired computation. Our problem is to prevent 

processes from executing actions when they are not supposed to. 

In order to solve the problem, we use augmentation variables in the 

same manner as in Section 4.2. Again, we use the variables of a leader 

election algorithm LE, as well as color variables                  , and 

mode variables                 for each  process  . 

 We now give an overview of P   LOOP(A,B). LE-actions execute with 

highest priority, ignoring the local base and color-mode configurations. 

After LE is silent, the configuration lies in C   L   M. The level values 

essentially define a BFS tree rooted at the leader. We will use that tree as 
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a communication backbone to enforce the correct order of computations 

of P-actions, A-actions, and B-actions. 

 

 

Figure 4.3 Loop Case 

A computation of A starting outside D, or a computation of B starting 

outside E, could end in an error, which causes the mode to change to P. 

A complete execution of P   LOOP(A, B), is also shown starting from   . 

Initially, only P executes. When the configuration reaches P, A executes 

until the configuration reaches A. The algorithm then alternates between 

computations of B which reach B and computations of A reaching A. 

When the configuration reaches A   B, the algorithm is silent.   

   

  

D 

P 

 B 
 

A 

C 

E 
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  The major problem we face is keeping each module from executing 

while another module is executing. We solve this problem using modes 

and color waves, using the same methods we used in Section 4.2. 

 In that section, we used color waves only during A-executions. Once 

B-execution began, the value of          remained 3 for all  . In 

P   LOOP(A,B), on the other hand, colors are used for all three sets of 

actions. As before, the color of each process is 0 when it is executing, 

and then changes to 1, 2, and 3, in successive waves. When           , 

then   knows that execution of the current module has finished, and can 

proceed to execute the next module. 

 We make use of the following predicates.  

1. P-Enabled   , meaning that   is enabled to execute an action of P.  

2. A-Enabled   , meaning that   is enabled to execute an action of A. 

3. B-Enabled   , meaning that   is enabled to execute an action of B. 

4.                     , a Boolean for 𝑦           , holds if the 

combination of colors and modes of   and its neighbors indicate 

the need to start the computation over. If 𝑦              , the value 

of                     𝑦  is given in Table 4.4 otherwise, the value 

is given in Table 4.5.                     𝑦  is undefined if 

𝑦           .  

5.                   𝑦 , a Boolean for 𝑦           , holds if no error 

has occurred, but   and 𝑦 detect that one of them must revert its 
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color to 0. If 𝑦           , the value of                   𝑦  is given 

in Table 4.4; otherwise, the value is given in Table 4.5. 

                  𝑦  is undefined if 𝑦           .  

6.                means that   is permitted to change mode in a 

normal manner, i.e., not due to error. This predicate holds 

provided the following conditions hold. 

(a)             

(b) For all 𝑦  𝑁   , either 𝑦          and 𝑦              , or 

𝑦       and 𝑦           
                     
                          

  

If                 holds, then the color-mode configuration of   can 

change from       or       to      , or from       to      , as 

illustrated in Figure 4.4.  
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Table 4.4: Color Modes for 𝑦          . 
   denotes that Color_Mode_Error    holds,   denotes that 

ColorInversion   𝑦  holds.   

 

y.mode  P P P P  A A A A  B B B B 

y.color  0 1 2 3  0 1 2 3  0 1 2 3 
 

x.mode = P 
x.color=0 

 

 

 I E  E E E E  E E E E 

x.mode = P 
x.color=1 

 I   E  E E E E  E E E E 

x.mode = P 
x.color=2 

 I E  E  E E E E  E E E E 

x.mode = P 
x.color=3 

 E E     E E E  E E E E 
 

x.mode = A 
x.color=0 

 E E E     I E  E E E  

x.mode = A 
x.color=1 

 E E E E  I   E  E E E E 

x.mode = A 
x.color=2 

 E E E E  I E  E  E E E E 

x.mode = A 
x.color=3 

 E E E E  E E     E E E 
 

x.mode = B 
x.color=0 

 E E E E  E E E     I E 

x.mode = B 
x.color=1 

 E E E E  E E E E  I   E 

x.mode = B 
x.color=2 

 E E E E  E E E E  I E  E 

x.mode = B 
x.color=3 

 E E E E   E E E  E E   
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Table 4.5: Color modes when 𝑦  𝑁    and 𝑦                  . 
  denotes that Color_Mode_Error    holds,   denotes that 

ColorInversion   𝑦  holds. 
 

y.mode  P P P P  A A A A  B B B B 

y.color  0 1 2 3  0 1 2 3  0 1 2 3 
 

x.mode = P 
x.color=0 

   I E  E E E E  E E E E 

x.mode = P 
x.color=1 

    E  E E E E  E E E E 

x.mode = P 
x.color=2 

 I     E E E E  E E E E 

x.mode = P 
x.color=3 

 E E     E E E  E E E E 
 

x.mode = A 
x.color=0 

 E E E     I E  E E E  

x.mode = A 
x.color=1 

 E E E E     E  E E E E 

x.mode = A 
x.color=2 

 E E E E  I     E E E E 

x.mode = A 
x.color=3 

 E E E E  E E     E E E 

 

x.mode = B 
x.color=0 

 E E E E  E E E     I E 

x.mode = B 
x.color=1 

 E E E E  E E E E     E 

x.mode = B 
x.color=2 

 E E E E  E E E E  I    

x.mode = B 
x.color=3 

 E E E E  E E E E  E E   
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Figure 4.3 Normal progression of color-mode configurations in the 

absence of error. 
Solid arrows represent broadcast or convergecast color waves, or normal 

switching of mode. Dashed arrows represent changes caused by either 
color inversion or by a process executing an action. In case of error, from 

anywhere in the figure, the color-mode configuration reverts to     . 
Those changes are not indicated in the figure.   

  

 We give the actions of our implementation of P + Loop(A, B) in Table 

4.6 
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Table 4.6:  Actions of A + B in the Restricted Non-Nested Case for 

Process x  
A1 

Priority 1 

LE 

 

LE-Enabled(x) 
        
     executes an 

LE-action 

A2 

Priority 2 

Not in D          A 

 A_        

        
            P 

           

A3 

Priority 2 

Not in E          B 

 B_       

        
            P 

           

A4 

Priority 2 

Color Mode 

Error 

 𝑦  𝑁                       𝑦  

                                     𝑦    

 

        
            P 

           

A5 

Priority 3 

A Action  𝑦        𝑦       A  

A-              

        
     executes an 

A-action 

A6 

Priority 3 

B Action  𝑦        𝑦       B  

B-              

        
     executes a 

B-action 

A7 

Priority 3 

Color 

Inversion 

 𝑦                         𝑦  
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A8 

Priority 4 

Broadcast 

Color Wave 

                 

 𝑦             𝑦            

 𝑦            𝑦          

 𝑦  𝑁     𝑦                

        
                

A9 

Priority 4 

Converge-cast 

Color Wave 

           

 𝑦            𝑦         

 𝑦            𝑦          

 𝑦  𝑁     𝑦              

        
              

A10 

Priority 4 

End P 

Start A 

         P 

Can_Switch(x) 

        
            A 

          

 

A11 

Priority 4 

End B 

Start A 

         B 

Can_Switch(x) 

        
            A 

          

 

A12 

Priority 4 

End A 

Start B 

         A 

Can_Switch(x) 

        
            B 
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CHAPTER 5  

PURPOSED ALGORITHM 

5.1 Overview of the Algorithm  

 In this section, first we give an intuitive description of the algorithm. 

Our algorithm consists of two phases: preprocessing and merging. 

During the preprocessing phase, we create an initial partition. Each 

group of the initial partition (with the possible exception of just one 

group) contains at least d_max/2 processes.  

 During the merging phase we merge groups in pairs. If {        } is a 

partition, we say that    and    are compatible if    ⋃    is connected and 

has diameter at most d_max. Otherwise, we say that    and    are 

incompatible. We identify three types of incompatibility.    and    could 

be not adjacent,    and    could be adjacent and strongly incompatible, 

or    and    could be adjacent and weakly incompatible.  

 The merging phase consists of a loop. During the first part of each 

iteration, each pair of adjacent groups decides whether to attempt to 

merge, or they will determine that they are incompatible. In the first 

case, progress toward a minimal partition has been made because there 

are fewer groups, and in the second case, progress has been made 

because that particular pair will not try to merge again. Eventually, every 

group will know that it is incompatible with every neighboring group, and 

thus the partition will be minimal. 
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5.2 Detailed Overview of the Algorithm 

 In this subsection, we give a top level description of the algorithm. 

Figure 5.1 illustrates the algorithm, where the boxes represent parts 

which will be separately described in subsequent subsections. The 

construction of the algorithm is done by concatenation, as explained in 

Section 4. In fact, our algorithm is precisely Preprocess 

    LOOP(Front,Back), as defined in Section 4.3, where Preprocess, Front, 

and Back are indicated by the outer boxes in Figure 5.1. 

 Two of those three processes are simple concatenations of 

subprocesses, following the paradigm explained in Section 4. We write 

                                                        

              

                                                  

                                                           

 where Comp       is the module that computes            for each  , 

etc.. The module Back is composed of two submodules, Merge and 

Comp           . However, Back is not the concatenation of those two 

submodules. We will define the structure of Back explicitly in Section 8. 
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Figure 5.1 Normal flow of the algorithm. 

The boxes indicate individual modules. 
                         
 

 We now give a more detailed description of each of the submodules of 

our algorithm. 

 The module LE, which elects a leader for the network and computes 

       , the distance from   to the leader, for each process  , is not shown 

separately in Figure 5.3, since its job is taken over by the submodule 

Comp     . 

 The module Preprocess, which plays the role of P as given in Section 

4.3, consists of five submodules, as follows. 

 

1. Comp      , which computes the array variable            for each 

process  . The correct value of        𝑦  is     𝑦 , provided that 

distance is at most        ; otherwise,        𝑦   . DIST is 

defined in Section 6.4. The values of            are permanent, i.e., 

when this submodule converges, they will never again be changed. 
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2. BFS-MIS, which elects a leader of  , and computes      and     , 

the BFS tree and the MIS tree of  , respectively. Both trees are 

rooted at the leader, which we call Root_BFS. That module also 

constructs a maximal independent set, MIS, which consists of all 

processes at even levels in     . BFS-MIS is taken from [28] and is 

described in section 6.2. The values of the variables computed by 

BFS-MIS are permanent. 

3. Computation of x.β, an integer x.β               for each x, in 

bottom up fashion on     , which guides the construction of the 

initial partition. The computation of x.β is described in Section 6.3 

4. The next module computes the initial partition, i.e, the choice of 

              for each  . The initial partition is in fact the minimum 

partition of the tree      , and every initial group, with the possible 

exception of the group containing Root_BFS, contains at least 

d_max   processes, of which at least             are in the 

maximal independent set. 

5. Comp         simply executes                        for each 

process  . These values could change if   later executes the 

submodule Merge, which is part of the module Back; however, the 

values of               are permanent. 

 The loop consists of two modules, Front and Back. Each of those 

modules has a number of variables that can change each time that 

module executes, but not during the execution of the other module. 
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Front is the simple concatenation of seven modules, using the technique 

given in Section 5:    

1. Computation of the dynamic array           for all  . The correct 

value of       𝑦  is 𝑦        for all 𝑦         .  

2. Computation of the dynamic array                for all  . The 

correct value of            𝑦  is         𝑦  for all 𝑦      , the 

current group which contains  .  

3. Computation of the dynamic array                   for all  . After 

convergence of that module,                is only defined if   is the 

leader of a group which borders     . The correct value of 

              is         𝑦 , where 𝑦 is the nearest process of      

which neighbors some member of     .  

4. Computation of the dynamic array                   for all  . After 

convergence of that module,                is only defined if   is the 

leader of a group which borders     , and if      contains some 

process which has distance greater than d_max from some process 

in     . The correct value of                  is the shortest 

distance, from   to some 𝑦       whose distance to some process 

in      is exactly        . If                    after convergence, 

the groups      and      will never be part of the same group, 

since the diameter of their union exceeds d_max. 

5. Computation of the variable       for all  . The correct value of 

      is the the leader   of a neighbor group which could possibly 
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merge with     , meaning that                    and 

                , as we shall explain in Sections 8.12. If there are 

multiple such groups,       is the minimum choice. If there is no 

such group,         after the module converges.          

If        , then   has made a “bid” to merge      with     . If, 

after convergence of Main,         for all  , then no more merging 

is possible, and the algorithm is silent. 

6. Computation of         for all  . If        , then the correct value 

of         is FALSE. Otherwise, the correct value of         is 

TRUE if, after convergence of Front,         and          TRUE. 

In that case               , i.e., each of the two groups has a bid 

to merge with the other. We call this situation a “mutual 

agreement to attempt to merge." During the next execution of 

Back, the two groups will merge if their union has diameter at 

most d_max.  

7. Computation of             . If         and          TRUE, 

meaning that      has an agreement to attempt to merge with the 

neighboring group     , then              𝑦  is computed for all 

𝑦           . The value of              𝑦  is an integer in the 

range            , and its correct value is the length of the 

shortest path in           from   to 𝑦.  

 Back consists of two submodules, but is not the concatenation of the 

submodules. Instead, the two submodules of Back are independent.    
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1. If      has an agreement to merge with     , and                 

      for all        and all       , then      and      will 

merge.  

2. On the other hand, if      has an agreement to merge with     , 

and there exist         and        such that                 

       , then the two groups will not merge; instead, a  weak 

certificate will be created to prevent      and      from attempting 

to merge again.  

5.3 Strong and Weak Incompatibility 

 We say that groups    and    are strongly incompatible if there exists 

processes x       and y     , where d(x, y) > d_max. In this case,    and    

cannot be merged. But a stronger condition also holds: If          
  and      

  
  for some subsequent partition   

      
     then   

  cannot be merged with   
 . 

(See Figure 5.2) 

If    and    are adjacent and not strongly incompatible, we say that 

they are weakly incompatible if                  . For example, in 

Figure 5.4,       and       are weakly incompatible. 

Figures 5.3, 5.4, and 5.5 show various situations that can arise. In 

each of those figures, three groups are indicated with different shadings, 

and the leader of each group is indicated by a larger circle around the 

process. Note that there is no requirement that the leader be the process 

of smallest ID in the group. We let         for all three examples. 
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Figure 5.2 Strong incompatibility. 
    and    are strongly incompatible,       , and       . Thus     and 

    are strongly incompatible.   
 

 

  In Figure 5.3, the groups       and       are strongly incompatible 

to each other, because there are processes in those two groups which are 

more than 7 apart. For example,           .       and       will offer to 

merge with      . Using the "smallest leader ID" rule,       will offer to 

merge with      . The groups       and       will then succeed in 

merging into a single group, which will be strongly incompatible with 

     . At that time a minimal partition is achieved. 

 In Figure 5.4, we show three groups, with leaders 19, 23, and 56. The 

groups       and       are not strongly incompatible, since          for 

any         and        .       will offer to merge with      . If       

also offers to merge with      , then those two groups have a mutual 
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agreement to try to merge. However that attempt will fail, since the 

diameter of the union             is greater than 7. Both       and 

      will then remember that they are weakly incompatible. 

 Weak incompatibility may not survive merger with a third group. If, 

during the next iteration,       and       offer to merge with each other, 

they will succeed, creating a new group, which will now have leader 19, 

since we pick the smaller of the two leaders to be the new leader. At this 

point,       is compatible with the new (larger)      , and if they offer to 

merge with each other, they will merge. 

 Figure 5.5 shows a situation where any two of three groups are 

weakly incompatible, but the union of all three groups would yield a 

group of diameter 7. Unfortunately, our algorithm is deadlocked in this 

situation, i.e.,  none of the three will be merged with either of the others. 
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Figure 5.3 Strongly incompatible processes 
Let d_max =7. G(19) and G(23) are strongly incompatible, but both are 

compatible with G(56). If G(19) later merges with G(56), the resulting 
group will still be strongly incompatible with G(23). 
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Figure 5.4 Temporary weak incompatibility 

Weak incompatibility may not be permanent. Let d_max = 7. In this 
example, G(56) is compatible with both G(19) and G(23), and G(19) and 

G(23) are weakly (but not strongly) incompatible. If G(56) merges with 
either of the others, the remaining two groups will be compatible, and 

can merge to include all the shaded area. 
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Figure 5.5 Weakly incompatibility deadlock 

Let d_max = 7. If all three groups shown were combined, the resulting set 
would have diameter 7. However, any two of the three are weakly 

incompatible, so no merging can occur. 
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CHAPTER 6  

PREPROCESSING 

The preprocessing module is illustrated by a box in the diagram 

shown in Figure 5.1. Preprocessing consists of four sub-modules, which 

we now consider in detail. 

6.1 Computation of dist     

 Comp(dist) is the submodule which computes            for all  . For 

any given    , the values        𝑦  for all     are computed by 

flooding, starting from  . After this computation converges,        𝑦  

    𝑦  if     𝑦         , and        𝑦    otherwise. Note that 

computation of the set of values          𝑧         , for z   , are 

completely independent. Thus, all values of        𝑦  are computed using 

  independent algorithms running concurrently, one for each choice of  𝑦. 

 For any x and y, we define 

       𝑦   
                                                          𝑦                                           

      𝑧  𝑦   𝑧  𝑁             𝑧  𝑁     𝑧  𝑦       
                                                                                                

  

Action A1 of Table 6.1 then sets        𝑦         𝑦 . 
 

6.2 Computation of the BFS and MIS Trees  

 We will assume the existence of a distributed algorithm, BFS-MIS, 

which elects a leader, leader_BFS , and constructs a BFS tree      of 

  rooted at leader_BFS. BFS-MIS also constructs a maximal independent 

set (MIS) of  , as well as a tree       also rooted at leader_BFS, which has 
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the property that the MIS is the set of processes at even depth. We are 

not concerned about the details of BFS-MIS, but we require that it 

satisfies the following conditions. 

1. BFS-MIS is self-stabilizing and silent.  

2. Every process   has the following variables.   

        (a)             the BFS level of   , the distance from   to leader_BFS.  

        (b)             , the parent of   in     .  

3. MIS is a maximal independent set of processes of  . That is:   

        (a) If      MIS, then   and 𝑦 are not neighbors.  

        (b) If    MIS, then some neighbor of   is in MIS.  

4.    MIS if and only if the path in      from   to leader_BFS has even 

length.  

 Any algorithm which satisfies the specifications could be used, such 

as the algorithm given in [28]. Henceforth, we treat BFS-MIS as a “black 

box.” 
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(a) 

 

 

 (b) 

Figure 6.1 BFS tree (a) and MIS tree (b) of an example graph, constructed 
by BFS-MIS 

Alternate BFS levels are shaded. In (b), members of MIS are circled.   
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6.3 Computation of 𝜷 

 The module BETA computes an integer                     for all  . 

The computation is bottom-up on     . We define Beta    as a function of 

the values of 𝑦 𝛽 for all children 𝑦 of  , and then   𝛽 is set to Beta   . 

Before we give the formal definition of the correct values of    𝛽, we give 

the intuition behind that definition. 

Our goal is to partition      into groups. Using  , we will construct a 

minimum partion of     , which we will call the initial partition of  . That 

is to say, if we delete all edges of   that are not edges of the tree     , no 

other partitions of      has fewer groups. 

We first note that   𝛽 depends only on the topology of 𝑇 , which we define 

to be the subtree of      rooted at  . We are actually constructing a 

partion of each 𝑇  from the bottom up, using the following rules. 

  The partition on 𝑇  has as few groups as possible.  

  The height of the top group of 𝑇 , namely that group, which 

contains  , is as small as possible. The reason for this rule is that 

it allows the top group to capture as much of      𝑇  as possible. 

In fact,   𝛽 will be the height of that top group.  

 If   is a leaf, then 𝑇  is a single point, and the partition of 𝑇  consists 

of exactly one group which is a tree of height zero. Thus,   𝛽   . 

Otherwise, let 𝑦    𝑦  be the children of   , and assume that partitions 

of all 𝑇 𝑖
 have been constructed, and thus all 𝑦  𝛽 are computed. 
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 Consider the top groups of all 𝑇 𝑖
. Since we want to minimize the 

partition of 𝑇 , we would like   to join together, into a single group, as 

many of the top groups of the subtrees as possible. If it is not possible to 

join two or more of those top groups into a single group, we would like 

  to join the subtree top group of smallest height, in order to allow 

maximum upward growth of the top group of 𝑇 . If neither of those is 

possible,   will start a new group, i.e., we let   𝛽   . 

 If the top group of any subtree 𝑇 𝑖
 does not join with  , then 𝑦  

becomes the leader of one group of the initial partition. At the end of the 

construction, since there are no processes above Root_BFS, it must 

become the leader of its group. 

 We now give the formal definition of the function Beta. If   is a leaf of 

    , then Beta     . Otherwise, Beta    is as defined below. 

1. If       d_max for all                 , then Beta     . (Note 

that this covers the case where   is a leaf of     .)  

2. Suppose 𝛽 𝑦   d_max for some                 .   

        (a) Let         𝑦   𝑦                 .  

        (b) If            then Beta       .  

        (c) If           , let                               and           

                                .  

(Note that              .) Then Beta        . 

Action A3 of Table 7.1 sets   𝛽          
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6.4  The Initial Partition: Computation of init_leader 

 Once 𝛽  is defined, we construct the initial partition, which is the 

minimum partition of     , by deleting some of the edges of     . Each 

resulting component will be a group of the initial partition. The rules for 

deletion of edges are given below. 

 Suppose   is a process which is not a leaf of     , and   𝑦   𝑦    is the 

set of children of   in     . We will delete the edge from 𝑦  to   if and only 

if the top group of 𝑇  does not include   . We renumber the children so 

that 𝛽       𝛽   . 

 If             , then we delete the edge         if and only if 

          .  

 If  𝛽           , then we delete the edge         if and only if     

and 𝛽 𝑦   𝛽 𝑦          .  

 The resulting graph, after deleting those edges from     , consists of 

the union of components, 𝑇    𝑇 , which are trees. Each of these 

components 𝑇  then defines a group   , defined to be the full subgraph of 

  whose processes are the same as those of 𝑇 . We let the leader of each 

group be the highest process in the group, i.e., the process closest to 

Root_BFS. 

 Using the above rules, we can define a function on process as follows: 

Init_Leader     
                                                    

                                         w                              
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(a) 

 

 

 (b) 

Figure 6.2 (a) the function β for the example network, where        , 
and (b) the resulting initial partition.   
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Lemma 6.1  

(a) For any  ,           . 

(b) All but possibly one    contains at least                     members 

of the MIS.  

Finally, the code for the entire preprocessing phase is given in Table 

6.1 below. Using the same notation as earlier, let BFS-MIS-Enabled    be 

the predicates such that   is enabled to execute an action of BFS-MIS. 

Action A6 in the table is necessary to satisfy Specification 3a given in 

Section 5.3. This is necessary to permit the first execution of Front to 

proceed, in case of erroneous initialization of the variable x.weak_cert[ ] 

for some x. This issue will be discussed in detail in Section 10. 
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Table 6.1: Actions of Module PREPROCESS 
 

Label Name Guard        Statement  

A1 

Priority 1 

DIST        𝑦         𝑦  
        
          𝑦  

       𝑦   

A2 

Priority 2 

BFS-MIS                    
        
     executes an 

action of BFS-MIS      

A3 

Priority 3 

Beta   𝛽          
        
     𝛽          

A4 

Priority 4 

 

Init Leader 

 

             

                

        
                 

                        

A5 

Priority 5 

Leader                         
        
            

                      

A6 

Priority 6 

Clear Weak 

Certificate 
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CHAPTER 7  

FRONT MODULE 

 We will refine the flow diagram slightly, by adding two submodules to 

Front. The module Front, illustrated by the second large box in Figure 

7.1, is the concatenation of nine submodules, which we now describe in 

detail. The variables          and                 are never changed during 

an execution of Front. 

 

 

Figure 7.1 Normal flow of the algorithm. 

The boxes indicate individual modules.  
  
 

7.1  Computation of         

The first box inside the module Front in Figure 7.1 represents the 

submodule that computes the dynamic array          , for all  . When that 

computation converges,       𝑦  𝑦  for all              . The dual 

version of that statement is that, for each given  ,                for all 
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             . The dual version gives better intuition for the calculation, 

which is by a top-down wave starting at 𝑦     𝑦 , which is set to 𝑦       . 

During subsequent executions of Front, the value of       𝑦  will 

change if          has changed. We define:  

     𝑦   𝑧  𝑁     𝑧      𝑦           𝑦   

           
                                                                

     𝑧     𝑦  𝑧      𝑦              𝑦   
               w                                                     

   

Action A1 of Table 7.1 then sets                  . 

7.2  Computation of              

 For each process  ,                is a dynamic array. The correct range 

of                is     , and the correct value of               is            

for all       . 

 This array is used for error checking. If               does not converge 

to an integer in the range           for all   such that                  , 

then   has detected an error. 

 We define:  

 𝑁    𝑦   𝑧  𝑁          𝑧              𝑧          𝑦          

            𝑦   
        𝑧              z  𝑁    𝑦          𝑁    𝑦   

             w                                                                                   
  

 Action A2 of Table 7.1 then sets                           𝑦 . 

7.3  Computation of                 

For each process  , after the dynamic array                   converges 

its range will be the set of leaders of all groups which neighbor     . The 
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purpose of this array is for each process to know the neighbor groups of 

its group. The array converges by simple flooding, starting by assigning 

                 to zero if   does not belong to      and is adjacent to a 

process which belongs to     . The correct value of                  is the 

shortest length of any path in      from   to some process of      which 

borders     . 

 We define:  

 𝑁         𝑧  𝑁          𝑧               𝑧                        

                    
                       𝑁                                              
        z                z  𝑁            𝑁        
             w                                                                                     

  

 Action A3 of Table 7.1 then sets                                  . 

Lemma 7.1 If COMP     , COMP          , and COMP              have 

converged, then                  is defined if and only if   is the leader of 

a group which is adjacent to     .  

7.4  Computing                 

 The most difficult part of the algorithm is deciding whether to merge 

two neighboring groups. Suppose that   and   are leaders of neighboring 

groups, and that    . The groups      and      can be merged if and 

only if      and      are compatible, i.e.,                      . 

Thus,      and      are incompatible if and only if  

          𝑦                              𝑦         
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Since the groups are adjacent and both groups are connected, we can 

simplify the condition:      and      are incompatible if and only if 

                                         

Recall that      and      are strongly incompatible if              

  for some        and some       . Strong incompatibility implies 

incompatibility, since                       . 

 The purpose of the array                   is to certify strong 

incompatibility. In fact, after stabilization of Front,      is strongly 

incompatible with      if and only if                    for some       , 

which in turn implies that                    for all       . 

Let   be a process. Suppose   is the leader of a group which is a 

neighbor of     . If      is strongly incompatible with     , the correct 

value of                  is the shortest distance, through     , to some 

       such that                for some       ; formally stated: 

                                                     

Note that if      and      are not strongly incompatible, the above 

formula is undefined. 

The values of strong_cert are computed recursively. For any   and any  , 

we define:  

 𝑁        z              z              z                        

                 

 
 
 

 
 

  

                                                           
            

       z                z  𝑁               𝑁        
 

           w                                                                                       
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 Action A4 of Table 7.1 then sets                                  . 

 After the values of the dynamic array                   stabilize for all  , 

a non-null value of                  certifies that      and      are 

strongly incompatible, and hence cannot merge. 

Suppose   and   are leaders of two neighboring groups. After 

stabilization of COMP(strong_cert), as well as the three earlier 

submodules of FRONT, one of two situations holds. 

1. If     𝑦        for all   𝑦           , then                    

for all        and 𝑦                  for all 𝑦      .  

2. Otherwise,                    for all        and 

𝑦                   for all 𝑦      . For a given       , there 

must exist some 𝑦       and 𝑧       such that   𝑦 𝑧        

 , and the correct value of                  is the shortest distance 

to such a choice of 𝑧. More formally: 

                         𝑧  𝑧        

  𝑦         𝑧 𝑦             

In this situation,   and   will never be able to be part of the same 

group.  

7.5  Computation of bid, agree, and merge_dist  

 After strong_cert has been correctly computed, each group decides to 

attempt to merge with a neighboring group, provided there exists a 

neighboring group which might still be compatible. Each process   

computes      , which is the leader of the neighboring group that   has 
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"bid" to merge with. (If all groups which neighbor      are already known 

by   to be incompatible, then        .) The bid is uniform, i.e., if 

𝑧      , then 𝑧          . 

 The variable         is Boolean. Write           . If, after bid has 

stabilized,        , where   is the leader of a neighboring group, and 

𝑦       for all 𝑦      , then there is an  agreement to attempt to merge 

between      and     . In this case,         and 𝑦       will both be 

computed to be true for all 𝑦           . On the other hand, if 

        and 𝑦       for all 𝑦      , then         will be computed to 

be false. 

After agree has stabilized,                  will be computed for all  . If 

        is false, then                    for all 𝑦. On the other hand, 

suppose            and        , as before; and         is true. Then 

the correct value of              𝑦  is              𝑦  for all 𝑦       

    . After            has stabilized,      and      are compatible if and 

only if              𝑦        for all   𝑦           . 

 We now show how our algorithm computes these variables. It is 

necessary to know the values of                 to make these 

computations, values which were computed during previous iterations of 

Module Back. If                 , and the values of           are 

correct, then      and      are weakly incompatible. We will explain the 

structure and computation of           in Section 8.1. 
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Define a Boolean function               , for    and  , meaning that      

and      are "possibly compatible," as follows. 

                

 
 
 

 
 

  

                                        
                                       

                     
 

             w                                           

  

For any process  , we define: 

                                             

          
                                                  

 
                                                            w                                   

  

For any process   and for        , we then define: 

         

 

 
 
 

 
 

  

                 𝑁                                                                             
  

                𝑧  𝑁     𝑧           z                                    
 

                   w                                                                                                                         

  

 𝑁                                   

 𝑁          𝑁     

 𝑁    𝑦    𝑧  𝑁     𝑧                           

             𝑦 

 

 
 
 

 
 

 

                                                                                                𝑦    
 

        z               z  𝑁    𝑦                      
 

                                                                                    w                      

  

 Action A5 of Table 7.1 then sets             , Action A6 sets 

                , and Action A7 sets              𝑦               𝑦 . 
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Lemma 7.2 If        , all previous submodules of Front have 

converged,  and there are no errors, then 𝑁              , and 

             𝑦           𝑦  for all 𝑦     .  

7.6  Computation of near and far 

 We now assume that the first seven submodules of Front have 

stabilized. The value of        is computed for each process  . After the 

computation of      has stabilized,       is computed for each process  . 

If         is false, then        and       will be computed to be  . 

 On the other hand, consider two neighboring groups with leaders   

and  . Without loss of generality,    . Suppose         and        . 

Then,         is true for all            . For all            , we 

will compute        to be the minimum         whose distance from 

some process in      is        , and we will compute       to be the 

minimum         such that                   . 

 We define the following functions. 

     𝑁   𝑁            z        z  𝑁         

                                            z            z                      z         

 𝑁          

           𝑁   𝑁                                                                                        

                                                            
   

    𝑁   𝑁                         w                                                                    

  

        

                                                                      
 

      𝑧       z                                                                                     
       𝑧                                                  w   
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Action A8 of Table 7.1 then sets        𝑁      , and Action A9 sets 

             

Lemma 7.3 If Front has converged, and if     are leaders of adjacent 

groups such that         and        , then: 

(a) If                      , then                for all 

           .  

(b) If                        , then there exist process        

and        such that  

(i)          and         for all            . 

(ii)                         .  
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Table 7.1: Module Front for Process x 

 

Label 

 

Name 

 

Guard 

  

Statement 

A1 

Priority 1 

Ldr 

 

                  
        
                     

A2 

Priority 2 

Group Dist            𝑦 

            𝑦  

        
               𝑦 

            𝑦  

A3 

Priority 3 

Border Dist               𝑦 

               𝑦  

        
                  𝑦 

               𝑦  

A4 

Priority 4 

Strong 

Certificate 

             𝑦 

               𝑦  

        
                 𝑦 

               𝑦  

A5 

Priority 5 

Bid              
        
                 

A6 

Priority 6 

Agree                  
        
                     

A7 

Priority 7 

Merge Dist              

               

        
                

               

A8 

Priority 8 

Near        𝑁       
        
           𝑁       

A9 

Priority 9 

Far              
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CHAPTER 8  

BACK MODULE 

 We now give a detailed description of the module Back, which consists 

of two submodules, Merge and Comp           . Suppose           , 

       , and             . If         , then      and      will 

merge during the execution of Back by executing the submodule Merge. 

If, on the other hand,         ,      and      will not merge; instead, 

all  of           will construct a weak certificate by executing the 

submodule Comp           . This weak certificate will remain in place 

until either      or      merges with another group. 

 The submodule Merge has another task, namely to delete out-of-date 

weak certificates. Suppose      and      merge. Then all previously 

existing weak certificates which involve either      or      must be 

deleted. 

8.1  Computation of               

 A weak certificate is a 4-tuple of variables:                         

                       . For short, we will let   also denote the 4-tuple 

         . 

 We define the function                                           

                         . If the configuration is not erroneous, and if 

        is true and         , or if         is false, then all the 

component functions of              are undefined, in which case we 

can say               . 
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Action A1 of Table 8.1 then sets                            , 

provided        . 

 We now give the intuition for weak certificates. Suppose         and 

          , and the configuration is not in error. If               , 

that means that      and      are weakly incompatible. 

Weak incompatibility of two groups      and      is discovered by 

examining the dynamic arrays                  for all            . The 

size of each such dynamic array is the cardinality of          , which is 

within the allowed space complexity of our algorithm. However, if, as the 

algorithm proceeds, each process must store that array for each 

neighboring group with which its group is weakly incompatible, and 

given that the number of such groups is           , the total memory 

required for such storage is            . This could exceed our allowed 

space bound of      per process. 

 The weak certificates solve this problem by certifying weak 

incompatibility using much less space. For each  ,                has 

space complexity     . Thus, even if                is defined for every 

possible  , the space requirement for each  to store all needed weak 

certificates is           . 

8.2  Merge 

 To implement the submodule Merge, we define three functions. 
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                  w                                                

  

                     𝑦  𝑁      𝑦     𝑦           
 
 𝑦                

           𝑦  𝑁      𝑦     𝑦     
 
 𝑦                       

          is true if   lies in a group that must be merged with another 

group.           is the leader of   after merging takes place. If 

                , then                     indicates that the neighbors 

of   have corresponding certificates if they are either in      or     . If 

                 and                     does not hold, or if          

holds, then                is part of an out-of-date weak certificate, and 

must be deleted. 

 

        Table 8.1: Module Back for Process x 

 

Label 

 

Name 

 

Guard 

  

Statement 

A1 

 

Weak 

Certificate 

        

                  

              

         
                       

              

A2 

 

Delete Weak 

Certificate 

                 

         or 

                     

         
                     

A3 

 

Merge                     

 𝑦  𝑁   

  𝑦                       
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CHAPTER 9  

ERROR DETECTION 

We have defined our algorithm to be Preprocess LOOP(Front,Back), 

using the construction given in Section 4.3. To apply the construction, 

we let P   Preprocess, A   Front, B   Back. We also define functions 

Front_Ok and Back_Ok, which play the role of the predicates A_Ok and 

B_Ok, respectively. These predicates must be defined so as to satisfy the 

list of specifications given in Section 4.3. 

 The sets of configurations in Figure 4.3 can then be defined as follows 

for our application:  

• C is the set of all configurations.  

• P is the set of all configurations where Preprocess is silent.  

• D is the set of all configurations where             holds for each 

process   .  

• E is the set of all configurations where            holds for each 

process  .  

• A is the set of all configurations where             holds for each 

process  , and no process is enabled to execute an action of Front.  

• B is the set of all configurations where            holds for each 

process  , and no process is enabled to execute an action of Back.  

• A   B is the set of legitimate configurations of our algorithm.  
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 We define the following predicates for each process  . Each of these 

predicates means that a specific variable appears, to  , to have the 

correct value.   

                   𝑦         𝑦  for all 𝑦.  

 BFS-MIS_        BFS-MIS-             

              𝛽         .  

                                               .  

               𝑦  𝑁      𝑦                 
 
  𝑦             

              .  

            𝑦          𝑦        𝑦  

Note that we require that     in this definition. The reason is 

that, otherwise, we would require that                  . This 

condition is not maintained during the execution of Back, and 

hence would result in the entire algorithm starting over every time 

Back executes. 

                 𝑦              𝑦             𝑦   

                                                          

                                                          

                       .  

                             .  

                   𝑦               𝑦               𝑦   

 𝑁                 𝑁      .  

                       .  
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 Let           . Then                 is true if the following 

conditions hold for all   such that                 .   

1.     

2. If          then    .  

3. If          then    .  

4. If 𝑦  𝑁    and 𝑦         , then   

(a) 𝑦              

(b) 𝑦              

(c)  𝑦                   

(d)  𝑦                    

5. If 𝑧  𝑁    and 𝑦         , then   

(a)  𝑦              

(b)  𝑦              

(c)   𝑦                   

(d)   𝑦                   

6. x.   

 
 
 

 
 

                                                                                                      
 

   
     𝑦       𝑦  𝑁         𝑦          

 
      𝑦       𝑦  𝑁         𝑦          

      w    
  

7.      

 
 
 

 
 

                                                                                                      
 

   
     𝑦       𝑦  𝑁         𝑦          

 
      𝑦       𝑦  𝑁         𝑦          

       w    
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 Finally, we define the predicates we need for the construction of our 

algorithm. Each of these is the conjunction of a number of the simpler 

predicates defined above. 

 The intuition is that, in order for either Front or Back to run properly, 

the variables computed by the other two modules must be correct. If not, 

the algorithm executes Action A2 or A3 of Table 5.6 and starts over. 

Once the algorithm starts over in this manner, it will not do so again, but 

will proceed to completion without error. 

              

            BFS-MIS                                    

                              

             

           BFS-MIS                                    

                                                         

                             𝑁                      
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CHAPTER 10  

COMPLEXITIES 

Lemma 10.1 The time complexity of our algorithm is   
      

        

Proof: Preprocess is known to take      rounds [28]. 

Let   be the current number of weak certificates,  the number of pairs of 

leaders       such that there is a weak certificate which certifies that 

     and      are incompatible. Then   
 

     
. Let   be the current 

number of groups. Define a potential   
  

     
  . Clearly,     

   

     
. 

We prove that   decreases by at least one during each iteration of the 

main loop of our algorithm. If no groups are merged during that iteration, 

  increases, and thus   decreases by an integer. Otherwise, the number 

of groups decreases by at least one, causing the first term of   to 

decrease by at least 
 

     
. The second term of   can increase by at most 

 

     
. 

 Thus, the number of iterations of the main loop of the algorithm is 

less than 
   

     
. Each iteration takes at most         rounds, and we are 

done.  

 We let   be the maximum cardinality of             for any    . 
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Lemma 10.2 The space complexity of our algorithm is      for each 

process, where the the space is measured in terms of the number of 

processes.  

Proof: By definition of  , for any process  ,                   has 

cardinality at most  .                       is a subset of                  , 

and hence has cardinality at most  . 

 Every group which borders      contains a process whose distance 

from   is at most        , and thus the number of such groups is less 

than  . Thus,                          and                          each 

has cardinality at most  . 

The one remaining dynamic array variable of a process   is 

                . The range of that array is at most the cardinality of 

         , where     bid. Thus,                          has cardinality 

at most   . 

 The remaining variables of a process   each take      space. Thus, 

the space complexity of our algorithm at   is     .  

Note that    ; hence, we can also state that the space complexity of 

our algorithm is      per process. 
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CHAPTER 11  

COMPETITIVENESS 

 We define an algorithm for the problem to be   -competitive if there is 

some constant   such that, for any network  , the number of groups in 

the d_max-partition of   computed by the algorithm does not exceed 

           , where      is the minimum number of groups possible in 

a d_max-partition of  . 

 A unit disk graph is a graph where each node is a point in the plane, 

and there is an edge between two nodes if and only if the distance 

between the two points is at most one. 

Lemma 11.1 Our algorithm is         -competitive.  

Proof. Every group in the initial partition, other than the one group which 

contains Root_BFS, has at least         processes. The number of the 

groups is thus no greater than 
      

     
  . □ 

Lemma 11.2 If   is a unit disk graph in the plane, then our algorithm is 

        
 

       
 -competitive.  

Proof. For each    , let    be the disk of diameter 1 centered at  , 

which has area    . If          
 is the optimal      -partition of  , then 

each set    ⋃     𝑖
   has diameter at most        , and hence, by the 

isoparametric inequality and Barbier's Theorem, has area at most 

             . It follows that the set             
 ⋃     has area 

at most                . 
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 Let   be the number of groups in the partition computed by our 

algorithm. Recall MIS, the set of processes of the maximal independent 

set generated by our algorithm. Let      be the cardinality of MIS. Since 

        for any two distinct   𝑦   MIS, we can conclude that the area 

of   is at least      . Finally, we recall that every group generated by our 

algorithm, with the possible exception of the one group containing 

Root_BFS, has at least             members of MIS. Thus  

 
          

 
        

        
     

 
 

               

 
 

 The statement of the lemma follows. 

  



www.manaraa.com

 

84 
 

CHAPTER 12  

CONCLUSION 

 We presented the membership management protocol that solves the 

problem of partitioning a network into groups of bounded diameter.  

 Given a network of processes X and a constant D, our self-stabilizing 

group membership protocol computes a partition of X, i.e., a set of disjoint 

connected subgraphs, which we call groups, each of diameter no greater 

than D. In this thesis, a silent self-stabilizing asynchronous distributed 

algorithm is given for the minimal group partition problem in a network 

with unique IDs, using the composite model of computation. The 

algorithm is correct under the unfair daemon.  

In the unit disk graph X in plane, our algorithm presented in this 

thesis is O(d_max)-competitive, where d_max is the upper bound on the 

diameter of any group. That is, the number of groups in the partition 

constructed by the algorithm is O(d_max) times the number of groups in 

the minimum D-partition. The time complexity of our algorithm is 

O  
      

       , where n is the number of processes in the network and diam 

is the diameter of the network.  The space complexity of our algorithm is 

O(H)  for each process, where H is the maximum cardinality of (d_max+1)-

neighborhood of any process. 

 Our method is to first construct a breadth-first search (BFS) tree for 

X, then find a maximal independent set (MIS) of X. Using the MIS and 

the BFS tree, an initial D-partition is constructed, after which groups are 



www.manaraa.com

 

85 
 

merged with adjacent groups until no more mergers are possible. The 

resulting D-partition is minimal. 

Mobile ad hoc networks are subject to dynamism where nodes 

constantly join and leave. The algorithm presented in this thesis can be 

enhanced in the future to handle the dynamism of network MANETs.  
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