
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2010

Self-stabilizing group membership protocol Self-stabilizing group membership protocol

Mahesh Subedi
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons, Digital Communications and Networking Commons, and

the Systems and Communications Commons

Repository Citation Repository Citation
Subedi, Mahesh, "Self-stabilizing group membership protocol" (2010). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 773.
https://digitalscholarship.unlv.edu/thesesdissertations/773

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/773?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

SELF-STABALIZING GROUP MEMBERSHIP PROTOCOL

by

Mahesh Subedi

Bachelor of Engineering in Computer Engineering
Institute of Engineering, Tribhuvan University

2005

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

School of Computer Science
Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2010

www.manaraa.com

Copyright © 2010 by Mahesh Subedi

www.manaraa.com

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Mahesh Subedi

entitled

Self-Stabilizing Group Membership Protocol

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Atjoy K. Datta, Committee Co-chair

John Minor, Committee Co-chair

Lawrence L. Larmore, Committee Member

Emma E. Regentova, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

December 2010

www.manaraa.com

iii

ABSTRACT

Self-Stabilizing Group Membership Protocol

by

Mahesh Subedi

Dr. Ajoy K. Datta, Examination Committee Chair

Professor of Computer Science
University of Nevada, Las Vegas

 In this thesis, we consider the problem of partitioning a network into

groups of bounded diameter.

 Given a network of processes and a constant , the group partition

problem is the problem of finding a -partition of , that is, a partition of

 into disjoint connected subgraphs, which we call groups, each of

diameter no greater than . The minimal group partition problem is to find

a -partition of such that no two groups can be combined;

that is, for any and , where , either is disconnected or

 has diameter greater than .

 In this thesis, a silent self-stabilizing asynchronous distributed

algorithm is given for the minimal group partition problem in a network

with unique IDs, using the composite model of computation. The

algorithm is correct under the unfair daemon.

 It is known that finding a -partition of minimum cardinality of a

network is NP-complete. In the special case that is the unit disk graph

in the plane, the algorithm presented in this thesis is -competitive,

www.manaraa.com

iv

that is, the number of groups in the partition constructed by the

algorithm is times the number of groups in the minimum -

partition.

 Our method is to first construct a breadth-first search (BFS) tree for

 , then find a maximal independent set (MIS) of . Using the MIS and the

BFS tree, an initial -partition is constructed, after which groups are

merged with adjacent groups until no more mergers are possible. The

resulting -partition is minimal.

www.manaraa.com

v

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ACKNOWLEDGEMENTS ... ix

CHAPTER 1 INTRODUCTION ... 1

1.1 Outline ... 3

CHAPTER 2 BACKGROUND ... 5

CHAPTER 3 PRELIMINARIES... 11

CHAPTER 4 COMBINING SELF-STABILIZING ALGORITHMS 18

CHAPTER 5 OVERVIEW OF THE ALGORITHM 42

CHAPTER 6 PREPROCESSING ... 54

1.1 Contributions ... 3

2.1 Distributed Systems ... 5

2.3 Self-stabilizing Systems .. 5

2.3 Mobile Ad Hoc Networks ... 8

2.4 Related Work .. 9

3.1 Model ... 11

3.2 Network .. 14

3.3 Dynamic Arrays .. 15

3.4 Problem Specification ... 16

4.1 The Nested SSS-Concatenation Problem 21

4.2 The Non-Nested Restricted SSS-Concatenation Problem.............. 23

4.3 Combining Distributed Algorithms in a Loop 30

5.1 Overview of the Algorithm ... 42

5.2 Detailed Overview of the Algorithm ... 43

5.3 Strong and Weak Incompatibility .. 48

6.1 Computation of dist .. 54

6.2 Computation of the BFS and MIS Trees 54

6.3 Computation of 𝛽 .. 57

6.4 The Initial Partition: Computation of init_leader 59

www.manaraa.com

vi

CHAPTER 7 FRONT MODULE .. 63

CHAPTER 8 BACK MODULE .. 73

CHAPTER 9 ERROR DETECTION 76

CHAPTER 10 COMPLEXITIES .. 80

CHAPTER 11 COMPETITIVENESS 82

CHAPTER 12 CONCLUSION .. 84

BIBLIOGRAPHY ... 86

VITA .. 89

7.1 Computation of ... 63

7.2 Computation of ... 64

7.3 Computation of ... 64

7.4 Computing ... 65

7.5 Computation of bid, agree, and merge_dist 67

7.6 Computation of near and far .. 70

8.1 Computation of ... 73

8.2 Merge .. 74

www.manaraa.com

vii

LIST OF TABLES

Table 4.1 Actions of A + B for Process : Nested Legitimacy Sets 22

Table 4.2 Actions of A + B in the Restricted Non-Nested Case for

Process x .. 29

Table 4.3 Sequential version of P + Loop(A, B) 31

Table 4.4 Color Modes for 𝑦 . .. 37

Table 4.5 Color modes when 𝑦 𝑁 and 𝑦 38

Table 4.6 Actions of A + B in the Restricted Non-Nested Case for

Process x .. 40

Table 7.1 Module Front for Process x ... 72

Table 8.1 Module Back for Process x .. 75

www.manaraa.com

viii

LIST OF FIGURES

Figure 4.1 Relation between set of configurations 22

Figure 4.2 Non-Nested Restricted Concatenation Problem. 24

Figure 4.3 Normal progression of color-mode configurations in the
absence of error. ... 39

Figure 5.1 Normal flow of the algorithm. .. 44

Figure 5.2 Strong incompatibility. .. 49

Figure 5.3 Strongly incompatible processes.. 51

Figure 5.4 Temporary weak incompatibility .. 52

Figure 5.5 Weakly incompatibility deadlock ... 53

Figure 6.1 BFS tree (a) and MIS tree (b) of an example graph, constructed

by BFS-MIS .. 56

Figure 6.2 (a) the function β for the example network, where ,
and (b) the resulting initial partition. 60

Figure 7.1 Normal flow of the algorithm. .. 63

www.manaraa.com

ix

ACKNOWLEDGEMENTS

 I would like to take this opportunity to sincerely thank my advisor

and graduate coordinator, Dr. Ajoy K. Datta for chairing my committee

and advising this work. I am indebted to him for his guidance

throughout this thesis work as well as for the invaluable support and

guidance during my masters program. I would like to thank Dr.

Lawrence L. Larmore for his invaluable help on the technical portion of

the thesis and for participating on my committee.

 I would like to thank Dr. John Minor and Dr. Emma E. Regentova for

their participation in my committee.

 I would like to thank the Department of Computer Science for their

financial support through a Graduate Teaching Assistantship. I would

like to thank all the professors with whom I worked as their teaching

assistant during my entire UNLV period.

 Finally I would like to thank my parents, who always miss me from

other side of the earth, for their love and encouragement in difficult

times.

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

 The network topology of wireless ad hoc networks is highly dynamic

and random. Nodes within such networks should be able to self-organize

and maintain any logical communication infrastructure. Also, frequent

changes in topology are hard to predict. Since mobile ad hoc networks

are based on wireless links, they are more prone to message loss, and

can experience higher delays and jitter, than fixed networks.

In addition to this, because of the highly dynamic nature of mobile ad

hoc networks, any service running on top of these networks must be

reliable. A group membership approach can help maintain reliability by

providing a cluster of nodes over the network that complies with the

properties required by the service using this network. Clusters of nodes

within the network partition this network while adhering to the given

problem constraints. Computing the maximum diameter of the network

is one of the most important requirements of applications running on top

of group membership protocols. Applications running on top of a group

membership protocol leverage the management of execution context

dynamics and node mobility by using this membership protocol. Group

membership provides various functionalities like collaborative editing,

providing fault tolerance, sharing computational load, etc.

 A group management protocol in mobile ad hoc networks requires a

number of design constraints and choices. Group constraints can be set

www.manaraa.com

2

according to the application that uses the underlying group membership

service. These group constraints can be view size, diameter of the view,

geographical positions of the view members, or some integrity and/or

security constraints.

 Beside the constraints required by the application running above the

group management service, the protocol itself must be distributed and

self-stabilizing to achieve fault tolerance. The group management

protocol must be the same for each node running the protocol,

independent of the underlying network or configurations. There should

not be any centralized node to manage group membership. This helps

achieve fault tolerance and load balancing in the network. Every

distributed system is prone to various failures including node failures,

memory corruption etc. The failure can be permanent, e.g. node failure,

or temporary, e.g. memory corruption. The distributed system, regardless

of the current state, should be guaranteed to recover to a legal

configuration in a finite number of steps, and remain in the legal state

until another fault occurs. Also, aside from overcoming faults, the

protocol must overcome any churn, i.e. change in topology or any new

appearance or disappearance of a node, in the network. Another

important property of wireless ad hoc networks is the efficiency of the

protocol. The overhead of group membership management must be low.

The amount of message sending and receiving required, and the time

required to achieve self-stabilization, must be minimum. This is critical

www.manaraa.com

3

in mobile wireless networks due to limited resources, specifically power

constraints.

1.1 Contributions

 We present a silent self-stabilizing distributed algorithm, in the

composite model of computation, for the group membership or partition

problem. Our algorithm works under the unfair daemon, and has a

competitiveness of O(d_max) in the planar disk graph case. The time

complexity of our algorithm is O

 , where n is the number of

processes in the network and diam is the diameter of the network. The

space complexity of our algorithm is O(H) for each process, where H is

the maximum cardinality of (d_max+1)-neighborhood of any process. Our

algorithm is constructed using a new technique for combining

distributed self-stabilizing algorithms.

1.2 Outline

 In Chapter 2, we give an overview of the distributed systems, mobile

ad hoc networks and group membership problem in general. We discuss

the related background work on membership management protocols. In

Chapter 3, we describe the model of computation used in the thesis and

discuss distributed networks and dynamic arrays. Then we formally

define the problem specification of the thesis.

 Combining two different distributed self-stabilizing algorithms is given

in Chapter 4. Chapter 5 provides the overview of the algorithm followed

www.manaraa.com

4

by more detailed description of the algorithm. We then present different

mode of incompatibility. The preprocessing module is described in

Chapter 6. Computation of dist, BFS and MIS trees, beta and the

computation of initial partition is covered in the subsequent sections of

chapter 6.

 Chapter 7 and 8 describe the main modules of the algorithm Front

and Back respectively. In Section 7.1 we describe the computation of a

dynamic array for each process. Section 7.2 describes the computation of

dynamic array grp_dist[] for error-checking purpose. The neighbor

groups of current process dynamic array border_dist[] is computed in

section 7.3. Dynamic array strong_cert[] is computed to decide whether

to merge or not to merge two groups, we describe in section 7.4.

Computation of bid, agree and merge_dist followed by computation of

near and far are described in subsequent sections.

 Two modules of back, weak_cert and merge, are described in sections

8.1 and 8.2 respectively.

 In Chapter 9, we discuss the error detection of the algorithm followed

by complexities and competitiveness in Chapter 10 and 11 respectively.

 Chapter 12 concludes the thesis.

www.manaraa.com

5

CHAPTER 2

BACKGROUND

2.1 Distributed Systems

 A distributed system is a communication network, or a collection of

independent computers that appears to its users as a single coherent

system. It can even be a single multitasking computer [14]. Although the

processors in distributed systems are autonomous in nature, they may

need to communicate with each other to coordinate their actions and

achieve a reasonable level of cooperation [24]. In a distributed system, a

program composed of executable statements is run by each computer.

Each execution of a statement changes the computer’s local memory

content, and hence the state of the computer. Consequently, a

distributed system is modeled as a set of n state machines that

communicate with each other.

In a distributed system, there are mainly two models of

communication between machines: message passing and shared

memory. In the message passing model, machines communicate with

each other by sending and receiving messages, whereas in the shared

memory model, communication is carried out by writing to and reading

from the shared memory.

2.3 Self-stabilizing Systems

 Self-Stabilization is related to autonomic computing, which entails

several “self-*” attributes like: self-organized [3], self-configuration, self-

www.manaraa.com

6

healing, and self-maintaining [25]. According to [25], research in a self-*

system is “a direct response to the shift from needing bigger, faster,

stronger computer systems to the need for less human-intensive

management of the systems currently available. System complexity has

reached the point where administration generally costs more than

hardware and software infrastructure.” The goals of the self-* systems

are reduction of human administration and maintenance, and an

increase of reliability, availability and performance.

 In 1973, Dijkstra introduced the term self-stabilization into the world

of computer science [13]. The concept of self-stabilization is one of fault-

tolerance. Unfortunately, only a few people had become aware of its

importance until Lamport endorsed this as “Dijkstra’s most brilliant

work” and a “milestone in work on fault-tolerance” in his invited talk at

the ACM Symposium on Principles of Distributed Computing in 1983.

Today it is one of the most active areas of research in the field of

computer science.

 A system is considered self-stabilizing if, starting from any arbitrary

state (possibly a fault state), it is guaranteed to converge to a legitimate

state which satisfies its problem specification in a finite number of steps.

Once it converges to a legitimate state, it must stay in that legitimate

state thereafter unless a fault occurs. With respect to behavior, it can

also be defined as a system starting from an arbitrary state, reaching a

state in finite time from which it starts behaving correctly according to its

www.manaraa.com

7

specification. Thus self-stabilization enables systems to recover from a

transient fault automatically.

 According to [6,5], self-stabilization can be defined in terms of two

properties; closure and convergence. Closure means that if a system is in

a correct (or legitimate) state, it is guaranteed to stay in a correct state, if

no fault occurs. On the other hand, convergence means that starting

from any arbitrary state, it is guaranteed that the system will eventually

reach a correct state in finite steps. In order for a system to be self

stabilizing, it must satisfy both of these properties.

 Self –stabilization has been extensively studied in the area of network

protocols. Protocols like routing, sensor networks, high-speed networks,

and connection management are just a part of many applications of self-

stabilization. Also, there exist many self-stabilizing distributed solutions

for graph theory problems. Examples include spanning tree

constructions, maximal matching, search structures, and graph coloring.

Many self-stabilizing solutions for numerous classical distributed

algorithms were also proposed. These include mutual exclusion, token

circulation, leader election, distributed reset, termination detection, and

propagation of information with feedback [14].

 In the study of self-stabilization, several aspects of models have been

considered, such as the following:

Inter process Communication: shared registers or message passing.

Fairness: weakly fair, strongly fair, or unfair.

www.manaraa.com

8

Atomicity: composite or read/write atomicity.

Types of Daemon: central or distributed.

 All in all, proving stabilization programs is quite challenging. Two

techniques have been commonly used in research literature, convergence

stair [19] and variant function [20] methods. Furthermore, many general

methods of designing self-stabilizing programs have been proposed which

include diffusing computation [4], silent stabilization [15], local stabilizer

[1], local checking and local correction [8, 7], counter flushing [27], self-

containment [18], snap-stabilization [11], super-stabilization [16], and

transient fault detector [9].

 Self-stabilization is a significant concept in the study of MANETs. Due

to the dynamic nature of MANET topology, the protocols for setting up

and organizing MANETs are desirable to be self-stabilizing.

2.3 Mobile Ad Hoc Networks

 Mobile ad hoc networks are key to the evolution of wireless networks.

Ad hoc networks are typically composed of equal nodes that

communicate over wireless links without any central control. In this type

of network, communication between two hosts is peer-to-peer, i.e., each

host directly communicating with another connected host. Ad hoc

networks have the same problems carried by wireless and mobile

communications such as bandwidth optimization, power control, and

transmission quality enhancements. Moreover, the multi-hop nature of

www.manaraa.com

9

ad hoc networks and lack of fixed infrastructures generates new research

problems.

 Mobile ad hoc networks in general are formed dynamically by an

autonomous system of mobile nodes that are connected via wireless links

without using the existing network infrastructure or centralized

administration.

2.4 Related Work

 Best effort group service[17] is a self-stabilizing dynamic distributed

protocol which ensures that the diameter of each group is limited by an

application specific maximum value (D-max). It tries to maintain existing

groups unless strong topology changes occur. The continuity property

allows an application running on top of best-effort group service to have

a more consistent view while executing. To maintain continuity, the

groups do not split unless required by diameter constraints.

In this protocol, any node whose neighbors within D-max hop distance

are potential group members. By flooding messages in a neighborhood,

a list of candidates can be discovered in D-max time. A current view

members maintained by a node are then sent in the neighborhood. If the

merging of the received list violates the diameter property, the list is

ignored and the sender is marked as incompatible. Any addition of a new

node in the group will be propagated to all the view members within D-

max time. The arrival of this node is accepted only when this does not

violate the diameter property. In the case of two members accepted by

www.manaraa.com

10

the two distant members of the view, one new member must leave the

group to ensure that the existing group does not split. New members are

added in view only after a D-max quarantine period to ensure they are

not rejected by other members of the current view. When a node needs to

leave the group to ensure the diameter constraint, the node with lowest

priority is removed. If priority is not defined by the application using the

membership service, is determined by node identity. Node identity is

used to decide which node to remove.

www.manaraa.com

11

CHAPTER 3

PRELIMINARIES

3.1 Model

 We are given a connected undirected network, of ,

where , and a distributed algorithm A on that network. Each

process has a unique ID, . By an abuse of notation, we will identify

each process with its ID.

 A self-stabilizing [13, 14] system is guaranteed to converge to the

intended behavior in finite time, regardless of the initial state of the

system. In particular, a self-stabilizing distributed algorithm will

eventually reach a legitimate state within finite time, regardless of its

initial configuration, and will remain in a legitimate state forever. An

algorithm is called silent if eventually all execution halts.

 We use the composite atomicity model of computation, where each

process has variables. Each process can read the values of its own and

its neighbors', but can only write to its own variables. Each transition

from a configuration to another, called a step of the algorithm, is driven

by a scheduler, also called a daemon.

 The program of each process consists of a finite set of actions of the

following form: .

For each action, the label is listed in the first column, and an informal

name is listed in the second column. The third column (guard) contains a

list of clauses, all of which must hold for the action to execute, and the

www.manaraa.com

12

fourth column contains the statement of the action. The guard of an

action in the program of a process is a Boolean expression involving the

variables of and its neighbors. The statement of an action of updates

one or more variables of process . An action can be executed only if it is

enabled, i.e., its guard evaluates to true.

 In the tables of programs, we assign a priority, a positive integer, to

each action. The guard of each action is the conjunction of the clauses in

the third column, together with the condition that no earlier (in terms of

priority) action is enabled.

 A process is said to be enabled if at least one of its actions is enabled.

A step consists of one or more enabled process executing an

action. The evaluations of all guards and executions of all statements of

those actions are presumed to take place in one atomic step called

composite atomicity [14]. All three of our algorithms are uniform, i.e.,

every process has the same program.

 When a process executes the statement of an action, there could be

neighbors of that are executing statements during the same step. We

specify that uses the current values of its own variables (which could

have just been changed during the current step), but old values of its

neighbors' variables, i.e., values before the current step.

 We use the distributed daemon. If one or more processes are enabled,

the daemon selects at least one of these enabled processes to execute an

action. We also assume that the daemon is unfair, i.e., that it need never

www.manaraa.com

13

select a given enabled process unless it becomes the only enabled

process.

 We define a computation to be a sequence of configurations

 such that each is a step.

 We measure the time complexity in rounds [14]. The notion of round

[14], captures the speed of the slowest process in an execution. We say

that a finite computation is a round if the

following two conditions hold:

1. Every process that is enabled at either executes or becomes

neutralized during some step of . We say that a is neutralized at

a step if is enabled at and not enabled at , but does

not execute during that step.

2. The computation does not satisfy condition 1.

 We call a computation of positive length which fails to satisfy

condition 1 an incomplete round.

 We define the round complexity of a computation to be the number of

disjoint rounds in the computation. More formally, we say that a

computation has round complexity if there exist indices

 such that,

1.

 is a round for all ,

2.
 is either a round or an incomplete round.

www.manaraa.com

14

 We remark that an incomplete round could have infinite length, since

the unfair daemon might never select an enabled process. But this

cannot happen for the algorithms given in this paper. We will show that

every computation of each of our algorithms is finite, i.e., all the

proposed algorithms in this thesis "work" under the unfair daemon.

3.2 Network

 We are given a network of processes with unique IDs. 𝑁 is the set

of neighbors of a process . 𝑁 .

 The length of a path is defined to be the number of edges in the path.

The distance 𝑦 between processes and 𝑦 is defined to be the

smallest length of any path between and 𝑦.

 Define = {y: d(x, y) k }, to be the k-neighborhood of x. Thus,

U(x) = .

 A subgraph of X = (V, E) is a set of processes V together with a set E of

links between those processes. We say that a subgraph G = (is full

if every link of X both of whose ends are processes of G is a link of G. By

abuse of notation, we will write x G to mean x if x is a process, or e

 G to mean that e if e is a link.

 If x, y G are processes, define 𝑦 to be the length of the shortest

path which lies entirely in G between x and y. If there is no such path we

define 𝑦 = . We say that G is disconnected if there exist processes

x, y G such that 𝑦 = ; otherwise, we say G is connected. Note

that (x, y) 𝑦 .

www.manaraa.com

15

 The size of a subgraph G, written size(G), is the cardinality (number of

processes) of G. A component of a subgraph G is the maximal non-empty

connected subgraph of G. A non-empty connected subgraph has exactly

one component.

 The diameter of a non-empty connected subgraph G, written diam(G),

is defined to be the maximum length of the minimum length path

through G, between any two processes of G, i.e., diam(G) = max

 𝑦 : , 𝑦 }.

3.3 Dynamic Arrays

 In our algorithm, each process will have both simple and array

variables. In each case, the range of an array variable is a set of process

IDs. The values and ranges of the arrays can change, and the range is

normally smaller than the set of all process IDs. Thus, array variables

are sparse dynamic arrays.

 We illustrate this with an example. Each process will have an array

variable , in which it will store the distances to all processes

within of . Thus, eventually, Range .

Initially, does not know the IDs of those processes. If we write 𝑦 ,

we mean the value of 𝑦 that has in its memory, which may not be

the correct value. If does not have a value for 𝑦 , i.e..,

 , we write , where " " is the symbol for "null,"

or "undefined."

www.manaraa.com

16

 If we need to set 𝑦 to a value , we write 𝑦 . If

 was previously defined, the old value is simply overwritten, but

if, previously, 𝑦 , then is added to and then

the value is assigned. Similarly, if we write 𝑦 , and previously

 𝑦 was defined, then 𝑦 is deleted from the . Because

of arbitrary initialization, the initial range of could contain IDs of

processes that are not within the allowed distance, or even fictitious IDs.

Techniques for implementation of sparse dynamic arrays are well-known,

and we do not concern ourselves with the details of that implementation.

 We allow a process to reassign all values of a dynamic array in a

single step. For example, in Action A1 in Table 6.1, we allow to update

the values of for any number of in a single step.

3.4 Problem Specification

 We are given a positive integer d_max. We define partition of X to be a

set of disjoint subgraphs, { , called groups, whose union

contains all process of X, such that diam(for all i. We say

that a partition is minimal if no two adjacent groups can be combined

into a set whose diameter is at most d_max. A minimal partition may not

be minimum, and it is known that finding a minimum partition, one

which has the smallest possible number of groups, is NP-hard.

 Our problem is to find a minimal partition of the network, such that

each process knows the ID and the distance, in its group, of every

www.manaraa.com

17

process in its group. In this thesis, we give a silent self-stabilizing

algorithm which solves the problem.

www.manaraa.com

18

CHAPTER 4

COMBINING SELF-STABILIZING ALGORITHMS

 We now consider the problem of combining distributed algorithms.

The problem of constructing such a combination, which is trivial for

sequential algorithms, is somewhat harder for distributed algorithms.

 For example, suppose A and B are algorithms, which are

concatenated, i.e., combined sequentially, to form an algorithm which we

call A + B. We will call A and B modules of the combined algorithm. A +

B consists of first executing A, then executing B, which uses the output

of A as its input.

 This construction is trivial in the sequential model, but not at all easy

in the distributed model. For example, suppose that A and B are both

self-stabilizing and silent. That is, from an arbitrary configuration, A

always converges to a configuration that satisfies some intermediate

predicate, and then halts; while from a configuration which satisfies that

intermediate predicate, B always converges to a configuration that

satisfies some final predicate, and then halts.

 More formally, we define an instance of the SSS-concatenation, i.e.,

self stabilizing and silent distributed algorithm concatenation, problem to

consist of the following.

1. A network of processes, where each process has a set of

variables. Let be the set of states of , as normally

www.manaraa.com

19

defined in the composite atomicity model, i.e., each state of is a

vector consisting of a value for each variable of .

Let C , the set of configurations of the network. For

any , let C , the local configuration of .

2. Two sets of actions, which we call the set of A-actions and the set

of B -actions. If C, we write

 ,

 , if there is an A-

action, respectively B-action, which changes to , respectively .

Similarly, we write
*

A

 if there is an A-computation, i.e., a

sequence of A-actions, which changes to , and we define

*

B
 similarly.

3. A set of configurations A C, the set of intermediate legitimate

states, such that every maximal A-computation ends at a

configuration in A. At a configuration in A, no process is enabled

to execute an A-action.

4. A set of configurations B C, the set of final legitimate states, such

that every maximal B-computation which starts in A ends at a

configuration in B. At a configuration in B, no process is enabled to

execute a B-action.

www.manaraa.com

20

 A solution to the above instance is an SSS distributed algorithm which

converges to B. We will only consider solutions which are obtained by

adding additional variables. More formally, all our solutions will have the

following properties.

1. Each process has all the same original variables, in addition to

some other variables, which we call augmentation variables, or -

variables.

Let be the set of states of the augmentation variables of

a process , and let S , the set of augmentation

configurations of . In the combined algorithm, the set of

configurations is C S. Each configuration of is thus an ordered

pair , where C is what we call the base configuration, and

 S is the augmentation configuration.

2. A set of actions for the combined algorithm, such that every

maximal computation of the combined algorithm is finite and ends

at a configuration in B S.

 Unfortunately, we have no solution for the SSS-concatenation

problem in general. We do, however, have solutions in some simple cases

which occur in practice.

www.manaraa.com

21

4.1 The Nested SSS-Concatenation Problem

 We need some additional notation. We write A- respectively

B-E , if a process is enabled to execute an A-action,

respectively B-action.

We define an instance of the nested SSS-concatenation problem to be

an instance of the SSS-concatenation problem which satisfies the

following additional conditions.

1. B A

2. There is a subset of variables of each process, which we call A-

variables, such that

(a) the predicate A- depends only on the values of the

A-variables of and its neighbors,

(b) no B-action changes an A-variable,

(c) if

 is a B-computation, and if no process

which executes during that computation is A-enabled at the

time it executes, then the computation is finite.

Note: there is no guarantee that a maximal B-computation

that satisfies the above restriction terminates in B, unless it

begins in A.

www.manaraa.com

22

 We can now implement A + B by using priorities; a process cannot

execute a B-action if it is enabled to execute an A-action. We call this

combination of algorithms nested concatenation.

Table 4.1: Actions of A + B for Process : Nested Legitimacy Sets

A1

Priority 1

A

A-

 executes an

A-action

A1

Priority 2

B B-

 executes a

B-action

We illustrate the relation between the sets of configurations A, B, and

C, in Figure 4.1.

Figure 4.1 Relation between set of configurations

In concatenation, where legitimacy sets are nested, A- is defined only in

terms of A-variables. A-actions are shown as solid-headed arrows, while B-

actions are indicated with open heads. Any execution outside A consisting of

only B-actions is finite, provided A-actions have priority over B-actions.

C

A

B

www.manaraa.com

23

 Nested concatenation is used in the literature. For example, in [28],

nested concatenation is used to construct the algorithm BFS-MIS which

is used in this paper as a module for our algorithm. Also, in this thesis,

we use nested concatenation to build the three main modules of our

algorithm from submodules.

4.2 The Non-Nested Restricted SSS-Concatenation Problem

 We now consider a somewhat less restricted special case of the SSS-

concatenation problem.

We define an instance of the non-nested restricted SSS-concatenation

problem to be an instance of the SSS-concatenation problem which

satisfies the following additional conditions.

 1. There is a set of configurations D C such that

 (a) A D

 (b) B D

 (c) Any B-computation starting from any configuration in D is

finite, and ends in B.

 2. There is a predicate B defined for each process such

that any maximal B computation either ends in B or contains a

configuration where B holds for some process .

www.manaraa.com

24

Figure 4.2 Non-Nested Restricted Concatenation Problem.

Actions of A are shown as solid-headed arrows, while actions of B are

indicated with open heads. From anywhere, a computation of A leads to

A D. From anywhere inside D, a computation of B leads to B.

Executions of actions of B outside of D are undesirable, and could slow

down convergence of A. Any computation of B eventually enters D, or is

detected as erroneous by some process, but a computation mixing

actions of A and B could continue forever without entering or being

detected as erroneous. (Although shown as disjoint in the figure, A and

B could intersect.)

 In order to construct the general concatenation A + B, we need to

introduce additional variables and actions, and thus to expand the

definition of a configuration.

1. We assume the existence of a self-stabilizing silent leader election

algorithm(module) LE. We do not concern ourselves with the

actions and variables of LE, other than the following requirements

that must be met when LE is silent:

A
B

D

C

www.manaraa.com

25

(a) There is a leader process.

(b) Each process has a non-negative integer variable ,

which is equal to the distance (i.e., length of the shortest

path) between and the leader of its component.

 For example, the algorithm given in [28] could be used for LE.

2. For any process , define

 𝑦 𝑁 𝑦

 𝑦 𝑁 𝑦

3. The LE-configuration is defined to be the configuration of the

network defined by considering only variables of LE. Let LE be the

set of all LE-configurations, and let L be the set of all legitimate,

i.e., silent, configurations of LE.

4. Each process has variables and

 , called the color and the mode of .

We define the color-mode configuration to be the configuration of

defined by considering only color and mode variables. Let M be the

set of all color-mode configurations.

Thus, S LE M, the set of augmentation configurations.

5. We define the complete configuration to be the ordered triple ,

where is the base configuration, is the LE-configuration, and

is the color-mode configuration of the network. Thus, the set of

complete configurations of the network is C S C LE M.

www.manaraa.com

26

6. We let LE- be the predicate defined using only the local

LE-configuration of a process, which indicates that is enabled to

execute an action of LE.

 We now give an overview of A + B in the non-nested restricted case.

LE-actions execute with highest priority, ignoring the local base and

color-mode configurations. After LE is silent, the configuration lies in

C L M. The level values essentially define a BFS tree rooted at the

leader. We will use that tree as a communication backbone to enforce the

correct order of computations of A-actions and B-actions.

 The problem we face in concatenating A and B is that, once A has

become silent, the B-actions could cause processes to once again become

A-enabled. This could result in an error, since the output variables of A

could be merely temporary, intended to be altered when B executes. Our

solution is to use to indicate which of the two modules is

permitted to execute, and to use color waves to signal to processes that

the execution of A is finished and they can change their mode from A to

B.

 We now explain in detail how the order of computation is enforced. If

a process detects any error (such as could be caused by the fact that

an arbitrary initial configuration is permitted) A and

 . Each process remains in the color-mode state as long as it has

www.manaraa.com

27

not finished executing both LE and A. When the root, i.e., the leader

elected by LE, detects that it is finished with both, it initiates a top-down

color wave, changing all colors to 1, unless that wave is interrupted by

the fact that not all calculations of LE and A are finished. This

interruption can occur any number of times, but eventually, the color 1

wave will reach the leaves, and a convergecast wave begins changing the

colors of all processes to 2.

 It is possible that the color 2 wave will also be interrupted, since that

wave could start at some leaves while calculations of A are continuing in

other portions of the network. But, eventually, the leader will have color

2, and unless there is an error caused by the arbitrary initialization, all

processes will have color 2 when the leader has color 2.

 Finally, a top-down color 3 wave will start from the leader. Each

process, while changing its color to 3, knows that (unless the

configuration is in error) all calculations of A are finished throughout the

network. When process and all its neighbors have color 3, it changes its

mode to B, and is then is ready to execute actions of B. These actions

could cause a process to once again become A-enabled, but that

enablement will be ignored. Eventually, B will be silent, and thus A + B

will be silent.

 We now list additional functions we need to implement A + B.

www.manaraa.com

28

1. , a Boolean which means that one of the

following holds:

(a) B and 𝑦 for some 𝑦 .

(b) and 𝑦 for some 𝑦 .

(c) and 𝑦 for some 𝑦 .

 Color-Mode error can only occur because of erroneous arbitrary

initialization.

2. , a Boolean which holds if one of the following

holds:

(a) and 𝑦 for some 𝑦 𝑁 .

(b) and 𝑦 for some 𝑦 .

Color inversion is not an error; it merely indicates that some

processes achieved local silence of A and LE while processes

elsewhere were still executing A-actions or LE-actions.

www.manaraa.com

29

Table 4.2: Actions of A + B in the Restricted Non-Nested Case for

Process x
A1

Priority 1

LE

LE-Enabled(x)

 executes an

LE-action

 A

A2

Priority 2

B-Error B

B-

 A

A3

Priority 2

Color-Mode

Error

 B

 A

A4

Priority 3

A Action 𝑦 𝑦 A

A-

 executes an

A-action

A5

Priority 3

B Action 𝑦 𝑦 B

B-

 executes a

B-action

A6

Priority 4

Color

Inversion

www.manaraa.com

30

A7

Priority 4

Broadcast

Color Wave

 𝑦 𝑦

 𝑦 𝑦

 𝑦 𝑁 𝑦

A8

Priority 4

Convergeca

st Color

Wave

 𝑦 𝑦

 𝑦 𝑦

 𝑦 𝑁 𝑦

A9

Priority 4

End A

Start B

 A

 𝑦 𝑁 𝑦

 B

4.3 Combining Distributed Algorithms in a Loop

 We now consider a much harder combination construction, which we

need for our algorithm in this paper. We call this the SSS-loop

combination problem. Once again, the sequential version of the problem is

trivial. Suppose we are given modules P, A, and B, and we wish to

execute P first, followed by a loop which alternates execution of A and B

www.manaraa.com

31

until neither module is capable of further execution. We could encode

this algorithm as follows:

Table 4.3: Sequential version of P + Loop(A, B)
1: Execute P until it is finished

2: repeat

3: Execute A until it is finished

4: Execute B until it is finished

5: until neither A nor B can execute any more.

The SSS-loop combination problem is to design a self-stabilizing silent

distributed algorithm which accomplishes the same task as the

sequential algorithm given above. We define an instance of the problem

to consist of the following.

1. Just as for the SSS-concatenation problem, we have a network ,

where each process has variables, and C is set of configurations

of the network.

2. Three sets of actions, which we call the set of P-actions, the set of

A-actions, and the set of B-actions.

3. Sets of configurations P, D, E, A, B C, such that

(a) P D.

www.manaraa.com

32

(b) A, B D E.

(c) A B .

 as illustrated in Figure 4.3, and such that

(a) No process is P-enabled in P.

(b) No process is A-enabled in A.

(c) No process is B-enabled in B.

(d) Every maximal P-computation is finite and ends in P.

(e) Every maximal A-computation that begins in D stays in D

and ends in A.

(f) Every maximal B-computation that begins in E stays in E

and ends in B.

4. Predicates A B , computable by , such that

(a) Every maximal A-computation either ends in A or contains

a configuration in which A for at least one process .

(b) Every maximal B-computation either ends in B or contains a

configuration in which B for at least one process .

5. Any alternating sequence of configurations of the form

*

A

*

B

*

A

*

B

such that A if is odd and B if is even, is finite.

www.manaraa.com

33

The purpose of this condition is to ensure that the combined

algorithm eventually terminates.

 Our task is to design a self-stabilizing silent distributed algorithm,

P LOOP(A,B), which works under the unfair daemon, and which

emulates the following computation:

1. Starting from any configuration in C, execute P-actions until the

configuration reaches P.

2. Execute the following loop until the configuration reaches A B.

(a) Execute A actions until the configuration reaches A.

(b) Execute B actions until the configuration reaches B.

Figure 4.3 illustrates the desired computation. Our problem is to prevent

processes from executing actions when they are not supposed to.

In order to solve the problem, we use augmentation variables in the

same manner as in Section 4.2. Again, we use the variables of a leader

election algorithm LE, as well as color variables , and

mode variables for each process .

 We now give an overview of P LOOP(A,B). LE-actions execute with

highest priority, ignoring the local base and color-mode configurations.

After LE is silent, the configuration lies in C L M. The level values

essentially define a BFS tree rooted at the leader. We will use that tree as

www.manaraa.com

34

a communication backbone to enforce the correct order of computations

of P-actions, A-actions, and B-actions.

Figure 4.3 Loop Case

A computation of A starting outside D, or a computation of B starting

outside E, could end in an error, which causes the mode to change to P.

A complete execution of P LOOP(A, B), is also shown starting from .

Initially, only P executes. When the configuration reaches P, A executes

until the configuration reaches A. The algorithm then alternates between

computations of B which reach B and computations of A reaching A.

When the configuration reaches A B, the algorithm is silent.

D

P

 B

A

C

E

www.manaraa.com

35

 The major problem we face is keeping each module from executing

while another module is executing. We solve this problem using modes

and color waves, using the same methods we used in Section 4.2.

 In that section, we used color waves only during A-executions. Once

B-execution began, the value of remained 3 for all . In

P LOOP(A,B), on the other hand, colors are used for all three sets of

actions. As before, the color of each process is 0 when it is executing,

and then changes to 1, 2, and 3, in successive waves. When ,

then knows that execution of the current module has finished, and can

proceed to execute the next module.

 We make use of the following predicates.

1. P-Enabled , meaning that is enabled to execute an action of P.

2. A-Enabled , meaning that is enabled to execute an action of A.

3. B-Enabled , meaning that is enabled to execute an action of B.

4. , a Boolean for 𝑦 , holds if the

combination of colors and modes of and its neighbors indicate

the need to start the computation over. If 𝑦 , the value

of 𝑦 is given in Table 4.4 otherwise, the value

is given in Table 4.5. 𝑦 is undefined if

𝑦 .

5. 𝑦 , a Boolean for 𝑦 , holds if no error

has occurred, but and 𝑦 detect that one of them must revert its

www.manaraa.com

36

color to 0. If 𝑦 , the value of 𝑦 is given

in Table 4.4; otherwise, the value is given in Table 4.5.

 𝑦 is undefined if 𝑦 .

6. means that is permitted to change mode in a

normal manner, i.e., not due to error. This predicate holds

provided the following conditions hold.

(a)

(b) For all 𝑦 𝑁 , either 𝑦 and 𝑦 , or

𝑦 and 𝑦

If holds, then the color-mode configuration of can

change from or to , or from to , as

illustrated in Figure 4.4.

www.manaraa.com

37

Table 4.4: Color Modes for 𝑦 .
 denotes that Color_Mode_Error holds, denotes that

ColorInversion 𝑦 holds.

y.mode P P P P A A A A B B B B

y.color 0 1 2 3 0 1 2 3 0 1 2 3

x.mode = P
x.color=0

 I E E E E E E E E E

x.mode = P
x.color=1

 I E E E E E E E E E

x.mode = P
x.color=2

 I E E E E E E E E E E

x.mode = P
x.color=3

 E E E E E E E E E

x.mode = A
x.color=0

 E E E I E E E E

x.mode = A
x.color=1

 E E E E I E E E E E

x.mode = A
x.color=2

 E E E E I E E E E E E

x.mode = A
x.color=3

 E E E E E E E E E

x.mode = B
x.color=0

 E E E E E E E I E

x.mode = B
x.color=1

 E E E E E E E E I E

x.mode = B
x.color=2

 E E E E E E E E I E E

x.mode = B
x.color=3

 E E E E E E E E E

www.manaraa.com

38

Table 4.5: Color modes when 𝑦 𝑁 and 𝑦 .
 denotes that Color_Mode_Error holds, denotes that

ColorInversion 𝑦 holds.

y.mode P P P P A A A A B B B B

y.color 0 1 2 3 0 1 2 3 0 1 2 3

x.mode = P
x.color=0

 I E E E E E E E E E

x.mode = P
x.color=1

 E E E E E E E E E

x.mode = P
x.color=2

 I E E E E E E E E

x.mode = P
x.color=3

 E E E E E E E E E

x.mode = A
x.color=0

 E E E I E E E E

x.mode = A
x.color=1

 E E E E E E E E E

x.mode = A
x.color=2

 E E E E I E E E E

x.mode = A
x.color=3

 E E E E E E E E E

x.mode = B
x.color=0

 E E E E E E E I E

x.mode = B
x.color=1

 E E E E E E E E E

x.mode = B
x.color=2

 E E E E E E E E I

x.mode = B
x.color=3

 E E E E E E E E E E

www.manaraa.com

39

Figure 4.3 Normal progression of color-mode configurations in the

absence of error.
Solid arrows represent broadcast or convergecast color waves, or normal

switching of mode. Dashed arrows represent changes caused by either
color inversion or by a process executing an action. In case of error, from

anywhere in the figure, the color-mode configuration reverts to .
Those changes are not indicated in the figure.

 We give the actions of our implementation of P + Loop(A, B) in Table

4.6

www.manaraa.com

40

Table 4.6: Actions of A + B in the Restricted Non-Nested Case for

Process x
A1

Priority 1

LE

LE-Enabled(x)

 executes an

LE-action

A2

Priority 2

Not in D A

 A_

 P

A3

Priority 2

Not in E B

 B_

 P

A4

Priority 2

Color Mode

Error

 𝑦 𝑁 𝑦

 𝑦

 P

A5

Priority 3

A Action 𝑦 𝑦 A

A-

 executes an

A-action

A6

Priority 3

B Action 𝑦 𝑦 B

B-

 executes a

B-action

A7

Priority 3

Color

Inversion

 𝑦 𝑦

www.manaraa.com

41

A8

Priority 4

Broadcast

Color Wave

 𝑦 𝑦

 𝑦 𝑦

 𝑦 𝑁 𝑦

A9

Priority 4

Converge-cast

Color Wave

 𝑦 𝑦

 𝑦 𝑦

 𝑦 𝑁 𝑦

A10

Priority 4

End P

Start A

 P

Can_Switch(x)

 A

A11

Priority 4

End B

Start A

 B

Can_Switch(x)

 A

A12

Priority 4

End A

Start B

 A

Can_Switch(x)

 B

www.manaraa.com

42

CHAPTER 5

PURPOSED ALGORITHM

5.1 Overview of the Algorithm

 In this section, first we give an intuitive description of the algorithm.

Our algorithm consists of two phases: preprocessing and merging.

During the preprocessing phase, we create an initial partition. Each

group of the initial partition (with the possible exception of just one

group) contains at least d_max/2 processes.

 During the merging phase we merge groups in pairs. If { } is a

partition, we say that and are compatible if ⋃ is connected and

has diameter at most d_max. Otherwise, we say that and are

incompatible. We identify three types of incompatibility. and could

be not adjacent, and could be adjacent and strongly incompatible,

or and could be adjacent and weakly incompatible.

 The merging phase consists of a loop. During the first part of each

iteration, each pair of adjacent groups decides whether to attempt to

merge, or they will determine that they are incompatible. In the first

case, progress toward a minimal partition has been made because there

are fewer groups, and in the second case, progress has been made

because that particular pair will not try to merge again. Eventually, every

group will know that it is incompatible with every neighboring group, and

thus the partition will be minimal.

www.manaraa.com

43

5.2 Detailed Overview of the Algorithm

 In this subsection, we give a top level description of the algorithm.

Figure 5.1 illustrates the algorithm, where the boxes represent parts

which will be separately described in subsequent subsections. The

construction of the algorithm is done by concatenation, as explained in

Section 4. In fact, our algorithm is precisely Preprocess

 LOOP(Front,Back), as defined in Section 4.3, where Preprocess, Front,

and Back are indicated by the outer boxes in Figure 5.1.

 Two of those three processes are simple concatenations of

subprocesses, following the paradigm explained in Section 4. We write

 where Comp is the module that computes for each ,

etc.. The module Back is composed of two submodules, Merge and

Comp . However, Back is not the concatenation of those two

submodules. We will define the structure of Back explicitly in Section 8.

www.manaraa.com

44

Figure 5.1 Normal flow of the algorithm.

The boxes indicate individual modules.

 We now give a more detailed description of each of the submodules of

our algorithm.

 The module LE, which elects a leader for the network and computes

 , the distance from to the leader, for each process , is not shown

separately in Figure 5.3, since its job is taken over by the submodule

Comp .

 The module Preprocess, which plays the role of P as given in Section

4.3, consists of five submodules, as follows.

1. Comp , which computes the array variable for each

process . The correct value of 𝑦 is 𝑦 , provided that

distance is at most ; otherwise, 𝑦 . DIST is

defined in Section 6.4. The values of are permanent, i.e.,

when this submodule converges, they will never again be changed.

www.manaraa.com

45

2. BFS-MIS, which elects a leader of , and computes and ,

the BFS tree and the MIS tree of , respectively. Both trees are

rooted at the leader, which we call Root_BFS. That module also

constructs a maximal independent set, MIS, which consists of all

processes at even levels in . BFS-MIS is taken from [28] and is

described in section 6.2. The values of the variables computed by

BFS-MIS are permanent.

3. Computation of x.β, an integer x.β for each x, in

bottom up fashion on , which guides the construction of the

initial partition. The computation of x.β is described in Section 6.3

4. The next module computes the initial partition, i.e, the choice of

 for each . The initial partition is in fact the minimum

partition of the tree , and every initial group, with the possible

exception of the group containing Root_BFS, contains at least

d_max processes, of which at least are in the

maximal independent set.

5. Comp simply executes for each

process . These values could change if later executes the

submodule Merge, which is part of the module Back; however, the

values of are permanent.

 The loop consists of two modules, Front and Back. Each of those

modules has a number of variables that can change each time that

module executes, but not during the execution of the other module.

www.manaraa.com

46

Front is the simple concatenation of seven modules, using the technique

given in Section 5:

1. Computation of the dynamic array for all . The correct

value of 𝑦 is 𝑦 for all 𝑦 .

2. Computation of the dynamic array for all . The

correct value of 𝑦 is 𝑦 for all 𝑦 , the

current group which contains .

3. Computation of the dynamic array for all . After

convergence of that module, is only defined if is the

leader of a group which borders . The correct value of

 is 𝑦 , where 𝑦 is the nearest process of

which neighbors some member of .

4. Computation of the dynamic array for all . After

convergence of that module, is only defined if is the

leader of a group which borders , and if contains some

process which has distance greater than d_max from some process

in . The correct value of is the shortest

distance, from to some 𝑦 whose distance to some process

in is exactly . If after convergence,

the groups and will never be part of the same group,

since the diameter of their union exceeds d_max.

5. Computation of the variable for all . The correct value of

 is the the leader of a neighbor group which could possibly

www.manaraa.com

47

merge with , meaning that and

 , as we shall explain in Sections 8.12. If there are

multiple such groups, is the minimum choice. If there is no

such group, after the module converges.

If , then has made a “bid” to merge with . If,

after convergence of Main, for all , then no more merging

is possible, and the algorithm is silent.

6. Computation of for all . If , then the correct value

of is FALSE. Otherwise, the correct value of is

TRUE if, after convergence of Front, and TRUE.

In that case , i.e., each of the two groups has a bid

to merge with the other. We call this situation a “mutual

agreement to attempt to merge." During the next execution of

Back, the two groups will merge if their union has diameter at

most d_max.

7. Computation of . If and TRUE,

meaning that has an agreement to attempt to merge with the

neighboring group , then 𝑦 is computed for all

𝑦 . The value of 𝑦 is an integer in the

range , and its correct value is the length of the

shortest path in from to 𝑦.

 Back consists of two submodules, but is not the concatenation of the

submodules. Instead, the two submodules of Back are independent.

www.manaraa.com

48

1. If has an agreement to merge with , and

 for all and all , then and will

merge.

2. On the other hand, if has an agreement to merge with ,

and there exist and such that

 , then the two groups will not merge; instead, a weak

certificate will be created to prevent and from attempting

to merge again.

5.3 Strong and Weak Incompatibility

 We say that groups and are strongly incompatible if there exists

processes x and y , where d(x, y) > d_max. In this case, and

cannot be merged. But a stronger condition also holds: If
 and

 for some subsequent partition

 then

 cannot be merged with
 .

(See Figure 5.2)

If and are adjacent and not strongly incompatible, we say that

they are weakly incompatible if . For example, in

Figure 5.4, and are weakly incompatible.

Figures 5.3, 5.4, and 5.5 show various situations that can arise. In

each of those figures, three groups are indicated with different shadings,

and the leader of each group is indicated by a larger circle around the

process. Note that there is no requirement that the leader be the process

of smallest ID in the group. We let for all three examples.

www.manaraa.com

49

Figure 5.2 Strong incompatibility.
 and are strongly incompatible, , and . Thus and

 are strongly incompatible.

 In Figure 5.3, the groups and are strongly incompatible

to each other, because there are processes in those two groups which are

more than 7 apart. For example, . and will offer to

merge with . Using the "smallest leader ID" rule, will offer to

merge with . The groups and will then succeed in

merging into a single group, which will be strongly incompatible with

 . At that time a minimal partition is achieved.

 In Figure 5.4, we show three groups, with leaders 19, 23, and 56. The

groups and are not strongly incompatible, since for

any and . will offer to merge with . If

also offers to merge with , then those two groups have a mutual

www.manaraa.com

50

agreement to try to merge. However that attempt will fail, since the

diameter of the union is greater than 7. Both and

 will then remember that they are weakly incompatible.

 Weak incompatibility may not survive merger with a third group. If,

during the next iteration, and offer to merge with each other,

they will succeed, creating a new group, which will now have leader 19,

since we pick the smaller of the two leaders to be the new leader. At this

point, is compatible with the new (larger) , and if they offer to

merge with each other, they will merge.

 Figure 5.5 shows a situation where any two of three groups are

weakly incompatible, but the union of all three groups would yield a

group of diameter 7. Unfortunately, our algorithm is deadlocked in this

situation, i.e., none of the three will be merged with either of the others.

www.manaraa.com

51

Figure 5.3 Strongly incompatible processes
Let d_max =7. G(19) and G(23) are strongly incompatible, but both are

compatible with G(56). If G(19) later merges with G(56), the resulting
group will still be strongly incompatible with G(23).

www.manaraa.com

52

Figure 5.4 Temporary weak incompatibility

Weak incompatibility may not be permanent. Let d_max = 7. In this
example, G(56) is compatible with both G(19) and G(23), and G(19) and

G(23) are weakly (but not strongly) incompatible. If G(56) merges with
either of the others, the remaining two groups will be compatible, and

can merge to include all the shaded area.

www.manaraa.com

53

Figure 5.5 Weakly incompatibility deadlock

Let d_max = 7. If all three groups shown were combined, the resulting set
would have diameter 7. However, any two of the three are weakly

incompatible, so no merging can occur.

www.manaraa.com

54

CHAPTER 6

PREPROCESSING

The preprocessing module is illustrated by a box in the diagram

shown in Figure 5.1. Preprocessing consists of four sub-modules, which

we now consider in detail.

6.1 Computation of dist

 Comp(dist) is the submodule which computes for all . For

any given , the values 𝑦 for all are computed by

flooding, starting from . After this computation converges, 𝑦

 𝑦 if 𝑦 , and 𝑦 otherwise. Note that

computation of the set of values 𝑧 , for z , are

completely independent. Thus, all values of 𝑦 are computed using

 independent algorithms running concurrently, one for each choice of 𝑦.

 For any x and y, we define

 𝑦
 𝑦

 𝑧 𝑦 𝑧 𝑁 𝑧 𝑁 𝑧 𝑦

Action A1 of Table 6.1 then sets 𝑦 𝑦 .

6.2 Computation of the BFS and MIS Trees

 We will assume the existence of a distributed algorithm, BFS-MIS,

which elects a leader, leader_BFS , and constructs a BFS tree of

 rooted at leader_BFS. BFS-MIS also constructs a maximal independent

set (MIS) of , as well as a tree also rooted at leader_BFS, which has

www.manaraa.com

55

the property that the MIS is the set of processes at even depth. We are

not concerned about the details of BFS-MIS, but we require that it

satisfies the following conditions.

1. BFS-MIS is self-stabilizing and silent.

2. Every process has the following variables.

 (a) the BFS level of , the distance from to leader_BFS.

 (b) , the parent of in .

3. MIS is a maximal independent set of processes of . That is:

 (a) If MIS, then and 𝑦 are not neighbors.

 (b) If MIS, then some neighbor of is in MIS.

4. MIS if and only if the path in from to leader_BFS has even

length.

 Any algorithm which satisfies the specifications could be used, such

as the algorithm given in [28]. Henceforth, we treat BFS-MIS as a “black

box.”

www.manaraa.com

56

(a)

 (b)

Figure 6.1 BFS tree (a) and MIS tree (b) of an example graph, constructed
by BFS-MIS

Alternate BFS levels are shaded. In (b), members of MIS are circled.

www.manaraa.com

57

6.3 Computation of 𝜷

 The module BETA computes an integer for all .

The computation is bottom-up on . We define Beta as a function of

the values of 𝑦 𝛽 for all children 𝑦 of , and then 𝛽 is set to Beta .

Before we give the formal definition of the correct values of 𝛽, we give

the intuition behind that definition.

Our goal is to partition into groups. Using , we will construct a

minimum partion of , which we will call the initial partition of . That

is to say, if we delete all edges of that are not edges of the tree , no

other partitions of has fewer groups.

We first note that 𝛽 depends only on the topology of 𝑇 , which we define

to be the subtree of rooted at . We are actually constructing a

partion of each 𝑇 from the bottom up, using the following rules.

 The partition on 𝑇 has as few groups as possible.

 The height of the top group of 𝑇 , namely that group, which

contains , is as small as possible. The reason for this rule is that

it allows the top group to capture as much of 𝑇 as possible.

In fact, 𝛽 will be the height of that top group.

 If is a leaf, then 𝑇 is a single point, and the partition of 𝑇 consists

of exactly one group which is a tree of height zero. Thus, 𝛽 .

Otherwise, let 𝑦 𝑦 be the children of , and assume that partitions

of all 𝑇 𝑖
 have been constructed, and thus all 𝑦 𝛽 are computed.

www.manaraa.com

58

 Consider the top groups of all 𝑇 𝑖
. Since we want to minimize the

partition of 𝑇 , we would like to join together, into a single group, as

many of the top groups of the subtrees as possible. If it is not possible to

join two or more of those top groups into a single group, we would like

 to join the subtree top group of smallest height, in order to allow

maximum upward growth of the top group of 𝑇 . If neither of those is

possible, will start a new group, i.e., we let 𝛽 .

 If the top group of any subtree 𝑇 𝑖
 does not join with , then 𝑦

becomes the leader of one group of the initial partition. At the end of the

construction, since there are no processes above Root_BFS, it must

become the leader of its group.

 We now give the formal definition of the function Beta. If is a leaf of

 , then Beta . Otherwise, Beta is as defined below.

1. If d_max for all , then Beta . (Note

that this covers the case where is a leaf of .)

2. Suppose 𝛽 𝑦 d_max for some .

 (a) Let 𝑦 𝑦 .

 (b) If then Beta .

 (c) If , let and

 .

(Note that .) Then Beta .

Action A3 of Table 7.1 sets 𝛽

www.manaraa.com

59

6.4 The Initial Partition: Computation of init_leader

 Once 𝛽 is defined, we construct the initial partition, which is the

minimum partition of , by deleting some of the edges of . Each

resulting component will be a group of the initial partition. The rules for

deletion of edges are given below.

 Suppose is a process which is not a leaf of , and 𝑦 𝑦 is the

set of children of in . We will delete the edge from 𝑦 to if and only

if the top group of 𝑇 does not include . We renumber the children so

that 𝛽 𝛽 .

 If , then we delete the edge if and only if

 .

 If 𝛽 , then we delete the edge if and only if

and 𝛽 𝑦 𝛽 𝑦 .

 The resulting graph, after deleting those edges from , consists of

the union of components, 𝑇 𝑇 , which are trees. Each of these

components 𝑇 then defines a group , defined to be the full subgraph of

 whose processes are the same as those of 𝑇 . We let the leader of each

group be the highest process in the group, i.e., the process closest to

Root_BFS.

 Using the above rules, we can define a function on process as follows:

Init_Leader

 w

www.manaraa.com

60

(a)

 (b)

Figure 6.2 (a) the function β for the example network, where ,
and (b) the resulting initial partition.

www.manaraa.com

61

Lemma 6.1

(a) For any , .

(b) All but possibly one contains at least members

of the MIS.

Finally, the code for the entire preprocessing phase is given in Table

6.1 below. Using the same notation as earlier, let BFS-MIS-Enabled be

the predicates such that is enabled to execute an action of BFS-MIS.

Action A6 in the table is necessary to satisfy Specification 3a given in

Section 5.3. This is necessary to permit the first execution of Front to

proceed, in case of erroneous initialization of the variable x.weak_cert[]

for some x. This issue will be discussed in detail in Section 10.

www.manaraa.com

62

Table 6.1: Actions of Module PREPROCESS

Label Name Guard Statement

A1

Priority 1

DIST 𝑦 𝑦

 𝑦

 𝑦

A2

Priority 2

BFS-MIS

 executes an

action of BFS-MIS

A3

Priority 3

Beta 𝛽

 𝛽

A4

Priority 4

Init Leader

A5

Priority 5

Leader

A6

Priority 6

Clear Weak

Certificate

www.manaraa.com

63

CHAPTER 7

FRONT MODULE

 We will refine the flow diagram slightly, by adding two submodules to

Front. The module Front, illustrated by the second large box in Figure

7.1, is the concatenation of nine submodules, which we now describe in

detail. The variables and are never changed during

an execution of Front.

Figure 7.1 Normal flow of the algorithm.

The boxes indicate individual modules.

7.1 Computation of

The first box inside the module Front in Figure 7.1 represents the

submodule that computes the dynamic array , for all . When that

computation converges, 𝑦 𝑦 for all . The dual

version of that statement is that, for each given , for all

www.manaraa.com

64

 . The dual version gives better intuition for the calculation,

which is by a top-down wave starting at 𝑦 𝑦 , which is set to 𝑦 .

During subsequent executions of Front, the value of 𝑦 will

change if has changed. We define:

 𝑦 𝑧 𝑁 𝑧 𝑦 𝑦

 𝑧 𝑦 𝑧 𝑦 𝑦
 w

Action A1 of Table 7.1 then sets .

7.2 Computation of

 For each process , is a dynamic array. The correct range

of is , and the correct value of is

for all .

 This array is used for error checking. If does not converge

to an integer in the range for all such that ,

then has detected an error.

 We define:

 𝑁 𝑦 𝑧 𝑁 𝑧 𝑧 𝑦

 𝑦
 𝑧 z 𝑁 𝑦 𝑁 𝑦

 w

 Action A2 of Table 7.1 then sets 𝑦 .

7.3 Computation of

For each process , after the dynamic array converges

its range will be the set of leaders of all groups which neighbor . The

www.manaraa.com

65

purpose of this array is for each process to know the neighbor groups of

its group. The array converges by simple flooding, starting by assigning

 to zero if does not belong to and is adjacent to a

process which belongs to . The correct value of is the

shortest length of any path in from to some process of which

borders .

 We define:

 𝑁 𝑧 𝑁 𝑧 𝑧

 𝑁
 z z 𝑁 𝑁
 w

 Action A3 of Table 7.1 then sets .

Lemma 7.1 If COMP , COMP , and COMP have

converged, then is defined if and only if is the leader of

a group which is adjacent to .

7.4 Computing

 The most difficult part of the algorithm is deciding whether to merge

two neighboring groups. Suppose that and are leaders of neighboring

groups, and that . The groups and can be merged if and

only if and are compatible, i.e., .

Thus, and are incompatible if and only if

 𝑦 𝑦

www.manaraa.com

66

Since the groups are adjacent and both groups are connected, we can

simplify the condition: and are incompatible if and only if

Recall that and are strongly incompatible if

 for some and some . Strong incompatibility implies

incompatibility, since .

 The purpose of the array is to certify strong

incompatibility. In fact, after stabilization of Front, is strongly

incompatible with if and only if for some ,

which in turn implies that for all .

Let be a process. Suppose is the leader of a group which is a

neighbor of . If is strongly incompatible with , the correct

value of is the shortest distance, through , to some

 such that for some ; formally stated:

Note that if and are not strongly incompatible, the above

formula is undefined.

The values of strong_cert are computed recursively. For any and any ,

we define:

 𝑁 z z z

 z z 𝑁 𝑁

 w

www.manaraa.com

67

 Action A4 of Table 7.1 then sets .

 After the values of the dynamic array stabilize for all ,

a non-null value of certifies that and are

strongly incompatible, and hence cannot merge.

Suppose and are leaders of two neighboring groups. After

stabilization of COMP(strong_cert), as well as the three earlier

submodules of FRONT, one of two situations holds.

1. If 𝑦 for all 𝑦 , then

for all and 𝑦 for all 𝑦 .

2. Otherwise, for all and

𝑦 for all 𝑦 . For a given , there

must exist some 𝑦 and 𝑧 such that 𝑦 𝑧

 , and the correct value of is the shortest distance

to such a choice of 𝑧. More formally:

 𝑧 𝑧

 𝑦 𝑧 𝑦

In this situation, and will never be able to be part of the same

group.

7.5 Computation of bid, agree, and merge_dist

 After strong_cert has been correctly computed, each group decides to

attempt to merge with a neighboring group, provided there exists a

neighboring group which might still be compatible. Each process

computes , which is the leader of the neighboring group that has

www.manaraa.com

68

"bid" to merge with. (If all groups which neighbor are already known

by to be incompatible, then .) The bid is uniform, i.e., if

𝑧 , then 𝑧 .

 The variable is Boolean. Write . If, after bid has

stabilized, , where is the leader of a neighboring group, and

𝑦 for all 𝑦 , then there is an agreement to attempt to merge

between and . In this case, and 𝑦 will both be

computed to be true for all 𝑦 . On the other hand, if

 and 𝑦 for all 𝑦 , then will be computed to

be false.

After agree has stabilized, will be computed for all . If

 is false, then for all 𝑦. On the other hand,

suppose and , as before; and is true. Then

the correct value of 𝑦 is 𝑦 for all 𝑦

 . After has stabilized, and are compatible if and

only if 𝑦 for all 𝑦 .

 We now show how our algorithm computes these variables. It is

necessary to know the values of to make these

computations, values which were computed during previous iterations of

Module Back. If , and the values of are

correct, then and are weakly incompatible. We will explain the

structure and computation of in Section 8.1.

www.manaraa.com

69

Define a Boolean function , for and , meaning that

and are "possibly compatible," as follows.

 w

For any process , we define:

 w

For any process and for , we then define:

 𝑁

 𝑧 𝑁 𝑧 z

 w

 𝑁

 𝑁 𝑁

 𝑁 𝑦 𝑧 𝑁 𝑧

 𝑦

 𝑦

 z z 𝑁 𝑦

 w

 Action A5 of Table 7.1 then sets , Action A6 sets

 , and Action A7 sets 𝑦 𝑦 .

www.manaraa.com

70

Lemma 7.2 If , all previous submodules of Front have

converged, and there are no errors, then 𝑁 , and

 𝑦 𝑦 for all 𝑦 .

7.6 Computation of near and far

 We now assume that the first seven submodules of Front have

stabilized. The value of is computed for each process . After the

computation of has stabilized, is computed for each process .

If is false, then and will be computed to be .

 On the other hand, consider two neighboring groups with leaders

and . Without loss of generality, . Suppose and .

Then, is true for all . For all , we

will compute to be the minimum whose distance from

some process in is , and we will compute to be the

minimum such that .

 We define the following functions.

 𝑁 𝑁 z z 𝑁

 z z z

 𝑁

 𝑁 𝑁

 𝑁 𝑁 w

 𝑧 z
 𝑧 w

www.manaraa.com

71

Action A8 of Table 7.1 then sets 𝑁 , and Action A9 sets

Lemma 7.3 If Front has converged, and if are leaders of adjacent

groups such that and , then:

(a) If , then for all

 .

(b) If , then there exist process

and such that

(i) and for all .

(ii) .

www.manaraa.com

72

Table 7.1: Module Front for Process x

Label

Name

Guard

Statement

A1

Priority 1

Ldr

A2

Priority 2

Group Dist 𝑦

 𝑦

 𝑦

 𝑦

A3

Priority 3

Border Dist 𝑦

 𝑦

 𝑦

 𝑦

A4

Priority 4

Strong

Certificate

 𝑦

 𝑦

 𝑦

 𝑦

A5

Priority 5

Bid

A6

Priority 6

Agree

A7

Priority 7

Merge Dist

A8

Priority 8

Near 𝑁

 𝑁

A9

Priority 9

Far

www.manaraa.com

73

CHAPTER 8

BACK MODULE

 We now give a detailed description of the module Back, which consists

of two submodules, Merge and Comp . Suppose ,

 , and . If , then and will

merge during the execution of Back by executing the submodule Merge.

If, on the other hand, , and will not merge; instead,

all of will construct a weak certificate by executing the

submodule Comp . This weak certificate will remain in place

until either or merges with another group.

 The submodule Merge has another task, namely to delete out-of-date

weak certificates. Suppose and merge. Then all previously

existing weak certificates which involve either or must be

deleted.

8.1 Computation of

 A weak certificate is a 4-tuple of variables:

 . For short, we will let also denote the 4-tuple

 .

 We define the function

 . If the configuration is not erroneous, and if

 is true and , or if is false, then all the

component functions of are undefined, in which case we

can say .

www.manaraa.com

74

Action A1 of Table 8.1 then sets ,

provided .

 We now give the intuition for weak certificates. Suppose and

 , and the configuration is not in error. If ,

that means that and are weakly incompatible.

Weak incompatibility of two groups and is discovered by

examining the dynamic arrays for all . The

size of each such dynamic array is the cardinality of , which is

within the allowed space complexity of our algorithm. However, if, as the

algorithm proceeds, each process must store that array for each

neighboring group with which its group is weakly incompatible, and

given that the number of such groups is , the total memory

required for such storage is . This could exceed our allowed

space bound of per process.

 The weak certificates solve this problem by certifying weak

incompatibility using much less space. For each , has

space complexity . Thus, even if is defined for every

possible , the space requirement for each to store all needed weak

certificates is .

8.2 Merge

 To implement the submodule Merge, we define three functions.

www.manaraa.com

75

 w

 𝑦 𝑁 𝑦 𝑦

 𝑦

 𝑦 𝑁 𝑦 𝑦

 𝑦

 is true if lies in a group that must be merged with another

group. is the leader of after merging takes place. If

 , then indicates that the neighbors

of have corresponding certificates if they are either in or . If

 and does not hold, or if

holds, then is part of an out-of-date weak certificate, and

must be deleted.

 Table 8.1: Module Back for Process x

Label

Name

Guard

Statement

A1

Weak

Certificate

A2

Delete Weak

Certificate

 or

A3

Merge

 𝑦 𝑁

 𝑦

www.manaraa.com

76

CHAPTER 9

ERROR DETECTION

We have defined our algorithm to be Preprocess LOOP(Front,Back),

using the construction given in Section 4.3. To apply the construction,

we let P Preprocess, A Front, B Back. We also define functions

Front_Ok and Back_Ok, which play the role of the predicates A_Ok and

B_Ok, respectively. These predicates must be defined so as to satisfy the

list of specifications given in Section 4.3.

 The sets of configurations in Figure 4.3 can then be defined as follows

for our application:

• C is the set of all configurations.

• P is the set of all configurations where Preprocess is silent.

• D is the set of all configurations where holds for each

process .

• E is the set of all configurations where holds for each

process .

• A is the set of all configurations where holds for each

process , and no process is enabled to execute an action of Front.

• B is the set of all configurations where holds for each

process , and no process is enabled to execute an action of Back.

• A B is the set of legitimate configurations of our algorithm.

www.manaraa.com

77

 We define the following predicates for each process . Each of these

predicates means that a specific variable appears, to , to have the

correct value.

 𝑦 𝑦 for all 𝑦.

 BFS-MIS_ BFS-MIS-

 𝛽 .

 .

 𝑦 𝑁 𝑦

 𝑦

 .

 𝑦 𝑦 𝑦

Note that we require that in this definition. The reason is

that, otherwise, we would require that . This

condition is not maintained during the execution of Back, and

hence would result in the entire algorithm starting over every time

Back executes.

 𝑦 𝑦 𝑦

 .

 .

 𝑦 𝑦 𝑦

 𝑁 𝑁 .

 .

www.manaraa.com

78

 Let . Then is true if the following

conditions hold for all such that .

1.

2. If then .

3. If then .

4. If 𝑦 𝑁 and 𝑦 , then

(a) 𝑦

(b) 𝑦

(c) 𝑦

(d) 𝑦

5. If 𝑧 𝑁 and 𝑦 , then

(a) 𝑦

(b) 𝑦

(c) 𝑦

(d) 𝑦

6. x.

 𝑦 𝑦 𝑁 𝑦

 𝑦 𝑦 𝑁 𝑦

 w

7.

 𝑦 𝑦 𝑁 𝑦

 𝑦 𝑦 𝑁 𝑦

 w

www.manaraa.com

79

 Finally, we define the predicates we need for the construction of our

algorithm. Each of these is the conjunction of a number of the simpler

predicates defined above.

 The intuition is that, in order for either Front or Back to run properly,

the variables computed by the other two modules must be correct. If not,

the algorithm executes Action A2 or A3 of Table 5.6 and starts over.

Once the algorithm starts over in this manner, it will not do so again, but

will proceed to completion without error.

 BFS-MIS

 BFS-MIS

 𝑁

www.manaraa.com

80

CHAPTER 10

COMPLEXITIES

Lemma 10.1 The time complexity of our algorithm is

Proof: Preprocess is known to take rounds [28].

Let be the current number of weak certificates, the number of pairs of

leaders such that there is a weak certificate which certifies that

 and are incompatible. Then

. Let be the current

number of groups. Define a potential

 . Clearly,

.

We prove that decreases by at least one during each iteration of the

main loop of our algorithm. If no groups are merged during that iteration,

 increases, and thus decreases by an integer. Otherwise, the number

of groups decreases by at least one, causing the first term of to

decrease by at least

. The second term of can increase by at most

.

 Thus, the number of iterations of the main loop of the algorithm is

less than

. Each iteration takes at most rounds, and we are

done.

 We let be the maximum cardinality of for any .

www.manaraa.com

81

Lemma 10.2 The space complexity of our algorithm is for each

process, where the the space is measured in terms of the number of

processes.

Proof: By definition of , for any process , has

cardinality at most . is a subset of ,

and hence has cardinality at most .

 Every group which borders contains a process whose distance

from is at most , and thus the number of such groups is less

than . Thus, and each

has cardinality at most .

The one remaining dynamic array variable of a process is

 . The range of that array is at most the cardinality of

 , where bid. Thus, has cardinality

at most .

 The remaining variables of a process each take space. Thus,

the space complexity of our algorithm at is .

Note that ; hence, we can also state that the space complexity of

our algorithm is per process.

www.manaraa.com

82

CHAPTER 11

COMPETITIVENESS

 We define an algorithm for the problem to be -competitive if there is

some constant such that, for any network , the number of groups in

the d_max-partition of computed by the algorithm does not exceed

 , where is the minimum number of groups possible in

a d_max-partition of .

 A unit disk graph is a graph where each node is a point in the plane,

and there is an edge between two nodes if and only if the distance

between the two points is at most one.

Lemma 11.1 Our algorithm is -competitive.

Proof. Every group in the initial partition, other than the one group which

contains Root_BFS, has at least processes. The number of the

groups is thus no greater than

 . □

Lemma 11.2 If is a unit disk graph in the plane, then our algorithm is

 -competitive.

Proof. For each , let be the disk of diameter 1 centered at ,

which has area . If
 is the optimal -partition of , then

each set ⋃ 𝑖
 has diameter at most , and hence, by the

isoparametric inequality and Barbier's Theorem, has area at most

 . It follows that the set
 ⋃ has area

at most .

www.manaraa.com

83

 Let be the number of groups in the partition computed by our

algorithm. Recall MIS, the set of processes of the maximal independent

set generated by our algorithm. Let be the cardinality of MIS. Since

 for any two distinct 𝑦 MIS, we can conclude that the area

of is at least . Finally, we recall that every group generated by our

algorithm, with the possible exception of the one group containing

Root_BFS, has at least members of MIS. Thus

 The statement of the lemma follows.

www.manaraa.com

84

CHAPTER 12

CONCLUSION

 We presented the membership management protocol that solves the

problem of partitioning a network into groups of bounded diameter.

 Given a network of processes X and a constant D, our self-stabilizing

group membership protocol computes a partition of X, i.e., a set of disjoint

connected subgraphs, which we call groups, each of diameter no greater

than D. In this thesis, a silent self-stabilizing asynchronous distributed

algorithm is given for the minimal group partition problem in a network

with unique IDs, using the composite model of computation. The

algorithm is correct under the unfair daemon.

In the unit disk graph X in plane, our algorithm presented in this

thesis is O(d_max)-competitive, where d_max is the upper bound on the

diameter of any group. That is, the number of groups in the partition

constructed by the algorithm is O(d_max) times the number of groups in

the minimum D-partition. The time complexity of our algorithm is

O

 , where n is the number of processes in the network and diam

is the diameter of the network. The space complexity of our algorithm is

O(H) for each process, where H is the maximum cardinality of (d_max+1)-

neighborhood of any process.

 Our method is to first construct a breadth-first search (BFS) tree for

X, then find a maximal independent set (MIS) of X. Using the MIS and

the BFS tree, an initial D-partition is constructed, after which groups are

www.manaraa.com

85

merged with adjacent groups until no more mergers are possible. The

resulting D-partition is minimal.

Mobile ad hoc networks are subject to dynamism where nodes

constantly join and leave. The algorithm presented in this thesis can be

enhanced in the future to handle the dynamism of network MANETs.

www.manaraa.com

86

BIBLIOGRAPHY

1. Afek Y, Dolev S. Local stabilizer* 1. Journal of Parallel and
Distributed Computing 2002;62(5):745-65.

2. Max-min d-cluster formation in wireless ad hoc networks. IEEE

INFOCOM 2000. nineteenth annual joint conference of the IEEE
computer and communications societies. proceedings; 2000.

3. Self-organizing systems case study: Peer-to-peer systems. DISC
confCiteseer; 2003.

4. Arora A, Gouda M. Distributed reset. IEEE Trans Computer

1994:1026-38.

5. Arora A, Gouda M. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Trans Software Eng 1993;19(11):1027.

6. Arora AK. A foundation of fault-tolerant computing. 1992.

7. Self-stabilization by local checking and correction. 32nd annual

symposium on foundations of computer science, 1991.

8. Awerbuch B, Patt-Shamir B, Varghese G, Dolev S. Self-stabilization by
local checking and global reset. Distributed Algorithms 1994:326-39.

9. Beauquier J, Delaët S, Dolev S, Tixeuil S. Transient fault detectors.

Distributed Computing 2007;20(1):39-51.

10. Bottazzi D, Montanari R, Rossi G. A self-organizing group
management middleware for mobile ad-hoc networks. Computer
Communications 2008;31(13):3040-8.

11. Enabling snap-stabilization. 23rd international conference on

distributed computing systems, 2003. proceedings; 2003.

12. Self-stabilizing leader election in optimal space. 10th international
symposium on stabilization, safety, and security of distributed

systems; 2008.

13. Dijkstra EW. Self-stabilizing systems in spite of distributed control.
Commun ACM 1974;17(11):644.

14. Dolev S. Self-stabilization. The MIT press; 2000.

www.manaraa.com

87

15. Dolev S, Gouda MG, Schneider M. Memory requirements for silent
stabilization. Acta Informatica 1999;36(6):447-62.

16. Superstabilizing protocols for dynamic distributed systems.

Proceedings of the fourteenth annual ACM symposium on principles
of distributed computingACM; 1995.

17. Ducourthial B, Khalfallah S, Petit F. Best-effort group service in

dynamic networks. ; 2008.

18. Fault-containing self-stabilizing algorithms. Proceedings of the
fifteenth annual ACM symposium on principles of distributed
computing ACM; 1996.

19. Heidemann J, Govindan R. An overview of embedded sensor

networks ISI TR-2004-594. 2008.

20. Kessels JLW. An exercise in proving self-stabilization with a variant
function. Information Processing Letters 1988;29(1):39-42.

21. Liu J, Sacchetti D, Sailhan F, Issarny V. Group management for

mobile ad hoc networks: Design, implementation and experiment.
ACM; 2005. 199 p.

22. Group management for mobile ad hoc networks: Design,

implementation and experiment. Proceedings of the 6th international
conference on mobile data management ACM; 2005.

23. Osman H, Taylor H. Managing group membership in ad hoc M-
commerce trading systems.

24. Peleg D. Distributed computing: A locality-sensitive approach. Society

for Industrial Mathematics; 2000.

25. Strunk JD, Ganger GR. A human organization analogy for self-*
systems. Algorithms and Architectures for Self-Managing Systems

2003.

26. Dimple: Dynamic membership protocol for epidemic protocols. IEEE
broadnets Citeseer; 2007.

27. Self-stabilization by counter flushing. Proceedings of the thirteenth
annual ACM symposium on principles of distributed computing ACM;

1994.

www.manaraa.com

88

28. Vemula P. Self-stabilizing k-clustering in mobile ad hoc networks.
UNLV; 2008.

www.manaraa.com

89

VITA

Graduate College
University of Nevada, Las Vegas

Mahesh Subedi

Degrees:
Bachelor of Engineering in Computer Engineering, 2005
Institute of Engineering, Tribhuvan University, Nepal

Thesis Title: Self-Stabilizing Group Membership Protocol

Thesis Examination Committee:
Chair Person, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. John Minor, Ph.D.
Committee Member, Dr. Lawrence L. Larmore, Ph.D

Graduate College Representative, Dr. Emma E. Regentova, Ph.D.

http://www.informatica.si/PDF/31-3/11_Kotsiantis%20-%20Supervised%20Machine%20Learning%20-%20A%20Review%20of...pdf

	Self-stabilizing group membership protocol
	Repository Citation

	-

